• 제목/요약/키워드: Compressive load

검색결과 1,437건 처리시간 0.039초

AE기법에 의한 하이브리드 섬유보강 시멘트복합체의 압축파괴특성 평가 (Assessing Compressive Failure Characteristics of Hybrid Fiber Reinforced Cementitious Composites by Acoustic Emission)

  • 김선우;지상규;전수만;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.229-232
    • /
    • 2006
  • The HPFRCCs show that the multiple crack propagation, high tensile strength and ductility due to the interfacial bonding of the fibers to the cement matrix. Moreover, performance of cement composites varies according to type and weight contents of reinforcing fiber. and HPFRCCs with hybrid fiber have better performance than HPFRCCs with single fiber in damage tolerance. Total four cylindrical specimens were tested, and the main variables were the type and weight contents of fiber, which was polyvinylalchol (PVA), polyethylene (PE). In order to clarify effect of hybrid types on the characteristics of fracture and damage process in cement composites, AE method was performed to detect micro-cracking in HPFRCCs under cyclic compression. Loading conditions of the uniaxial compression test were monotonic and cyclic loading. And from AE parameter value, it is found that the second and third compressive load cycles resulted in successive decrease of the amplitude as compared with the first compressive load cvcle.

  • PDF

친환경 조립식 빗물침투저류블록 구조체의 성능검토 (Performance Evaluation of Eco-Friendly Prefabricated Rainwater Permeable Detention Block Structure)

  • 정영웅;주승진;김호진;이태규;최희용;류정림;최형길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.299-300
    • /
    • 2023
  • In this study, the performance evaluation and structural safety of rainwater permeation detention block were analyzed. As a result, the compressive strength (19.3 MPa), flexural strength (5.2 MPa), and permeability coefficient (2.0 mm/s) of the eco-friendly prefabricated rainwater permeable detention block satisfied the KS F 4419 and SPS-KCIC0001-0703 and it was confirmed sufficient safety even under maximum load.

  • PDF

마이크로파일의 하중전이특성 및 지지성능 분석 (Load transfer characteristics and bearing capacity of micropiles)

  • 구정민;최창호;조삼덕;이기환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF

준정적 축 압축하중을 받는 Al/CFRP/GFRP 혼성부재의 에너지흡수 특성 (Energy Absorption Characteristics of the Al/CFRP/GFRP Hybrid Member under Quasi-static Axial Compressive Load)

  • 김선규;허욱;임광희;정종안
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.588-592
    • /
    • 2012
  • This study concentrates the effect of hybridisation on the collapse mode and energy absorption for composite cylinders. The static collapse behavior of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell under quasi-static axial compressive load has been investigated experimentally. Eight different hybrids of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell were fabricated by autoclave. Eight types of composites were tested, namely, Al/carbon fiber/epoxy, Al/glass fiber/epoxy, Al/carbon-carbon-glass/epoxy, Al/carbon-glass-carbon/epoxy, Al/carbon-glass-glass/epoxy, Al/glass-glass-carbon/epoxy, Al/glass-carbon-glass/epoxy and Al/glass-carbon-carbon/epoxy. Collpase modes were highly dominated by the effect of hybridisation. The results also showed that the hybrid member with material sequence of Al-glass-carbon-carbon/epoxy exhibited good energy absorption capability.

비틀림을 받는 프리스트레스트 콘크리트 부재의 새로운 비선형 해석 모델 (A New Model for Accurate Nonlinear Analysis of Prestressed Concrete Members under Torsion)

  • 오병환;박창규
    • 콘크리트학회지
    • /
    • 제6권2호
    • /
    • pp.159-168
    • /
    • 1994
  • 본 논문에서는 비틀림을 받는 프리스트레스트 콘크리트 부재의 거동에 대한 합리적인 해석법을 연구 하였다. 이를 위하여 콘크리트 균열 이전 이후의 인장강성을 합리적으로 고려한 이론을 제시하였다. 또한 이축응력상태하의 콘크리트의 압축강도와 인장강도에 대한 영향효과를 실제적으로 고려하였다. 연구결과 균열비틀림강도와 극한비틀림강도는 실험치와 잘 일치하였으며 따라서 본 논문에서 제시한 이론은 합리적인 것으로 나타났다. 그리고 사용하중상태 뿐만 아니라 극한하중상태까지 전하중이력에 대한 거동을 해석함으로써 비틀림을 받는 프리스트레스트 콘크리트 부재의 좀 더 실제적인 해석을 가능하게 하였다.

단나선근으로 횡보강된 콘크리트의 횡보강효과 (An experimental Study on the Confinement Effect of Concrete specimens confined by Single Spirals)

  • 김진근;박찬규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.301-305
    • /
    • 1994
  • Experimental research was carried out to investigate the confinement effect of concrete specimens confined by single spirals subjected to the concentric axial compressive load. Main variables are the compressive strength of concrete, the spacing of the spiral reinforcement and the yield strength of the spiral reinforcement. Axial stress-strain curves are reported.

  • PDF

설계하중 및 고온을 받은 초고강도 콘크리트의 잔존압축강도 및 변형 특성 평가 (Evaluation on Residual Compressive Strength and Strain Properties of Ultra High Strength Concrete with Design Load and Elevated Temperature)

  • 윤민호;김규용;남정수;윤종일;배창오;최경철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.263-264
    • /
    • 2012
  • In this study, the ultra high strength concrete which have 100, 150, 200MPa took the heat from 20℃ to 70 0℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

FRC를 적용한 FRP-콘크리트 합성보의 거동특성 (Behavior Characteristics of FRP-Concrete Composite Beam using FRC)

  • 조정래;조근희;김병석;진원종;김성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties

  • Fayed, Sabry;Mansour, Walid
    • Advances in concrete construction
    • /
    • 제10권4호
    • /
    • pp.319-332
    • /
    • 2020
  • The impacts of reinforcing concrete matrix with steel fibers, polypropylene fibers and recycled plastic fibers using different volume fractions of 0.15%, 0.5%, 1.5% and 2.5% on the compressive and tensile characteristics are experimentally investigated in the current research. Also, flexural behavior of plain concrete (PC) beams, shear performance of reinforced concrete (RC) beams and compressive characteristics of both PC and RC columns reinforced with recycled plastic fibers were studied. The experimental results showed that the steel fibers improved the splitting tensile strength of concrete higher than both the polypropylene fibers and recycled plastic fibers. The end-hooked steel fibers had a positive effect on the compressive strength of concrete while, the polypropylene fibers, the recycled plastic fibers and the rounded steel fibers had a negative impact. Compressive strength of end-hooked steel fiber specimen with volume fraction of 2.5% exhibited the highest value among all tested samples of 32.48 MPa, 21.83% higher than the control specimen. The ultimate load, stiffness, ductility and failure patterns of PC and RC beams in addition to PC and RC columns strengthened with recycled plastic fibers enhanced remarkably compared to non-strengthened elements. The maximum ultimate load and stiffness of RC column reinforced with recycled plastic fibers with 1.5% volume fraction improved by 21 and 15%, respectively compared to non-reinforced RC column.

압축강도와 풍화도에 관련된 퇴적암의 공학적 특성 (Engineering Characteristics of the Sedimentary Rocks on Compressive Strength and Weathering Grade)

  • 이영휘;김영준;박준규
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.5-17
    • /
    • 2000
  • 본 연구에서는 대구ㆍ경북지역에 분포하는 셰일, 이암, 실트스톤, 사암에 대한 물리ㆍ역학적 특성을 실험실과 현장에서 측정하였다. 절리와 층리가 잘 발달한 퇴적암에서 일축압축 시험을 위한 암석코어 시료를 확보하기가 어렵다. 그래서 퇴적암에 대해서 점하중강도, 슈미트해머 반발치, 압열인장강도, p-파속도, 흡수율등의 특성값들과 일축압축강도의 상관성을 분석하였다. 그 결과 퇴적암의 일축압축강도를 제반지수를 이용하여 평가할 때 기존의 상관식은 일축압축강도를 크게 평가하는 것으로 나타났다. 또한 암석의 화학성분과 광물성분을 XRF와 XRD분석을 통해 조사하였다. 추가적으로 육안식별에 의한 풍화등급 구분은 주관적인 경향에 따라 다르게 분류되는 혼란이 야기되므로 점하중강도, 슈미트해머 반발치, 흡수율과 같은 지수들을 이용하여 암석의 풍화도를 정량적으로 나타내었다.

  • PDF