• Title/Summary/Keyword: Compression member

Search Result 223, Processing Time 0.027 seconds

Flexural Tests on Post-Tensioned Segmental Composite Beam (세그멘탈 합성보의 휨 실험)

  • 김인규;설동재;유승룡
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.487-492
    • /
    • 2002
  • The interior portion of Gerber's beam are constructed with post-tensioned segmental composite beams in this study. A precast concrete member which is larger than the limits of domestic transportation regulation in weight, length, and volume is divided into three parts, transported separately, and erected with a composite member by post-tensioning in site. Static flexural loading tests are performed on Gerber's type frames which are consisted with 2.5m overhangs and 5m interior beams composited from three pieces. The connection of overhang to interior composite beam and beam to beam, and flexural performance of interior portion of Gerber's beam are examined thoroughly. All of the tests are ended with a compression failure of the interior composite beams over the design strength of homogeneous beams. The brittle connection failures or tensile failures with the failure of lower strand was not observed in any test frames.

  • PDF

Energy Absorption Characteristics of CFRP/Foam Circular Members according to Interface Number (계면수 변화에 따른 CFRP/Foam 원형부재의 에너지 흡수특성)

  • Choi, Ju-Ho;Lee, Kil-Sung;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.603-608
    • /
    • 2010
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP(Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. Test was executed in order to compare the results to the energy absorption and collapse shape. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated. According to the experimental results, specimens filled with foam are higher total energy absorption than the other specimens not filled with the foam.

A Study on the Collapse Characteristics of Hat-Shaped Members with Spot Welding under Axial Compression(I) (모자형 단면 점용접부재의 축방향 압궤특성에 관한 연구(I))

  • 차천석;김정호;양인영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.192-199
    • /
    • 2000
  • The spot-welded automotive side member which has a hat-shaped section and a double hat shaped section has been tested on the axial static(10mm/min) and quasi-static(50mm/min) compressing load. The collapse characteristics of automotive sections have been reviews on shift on shape and in width of the spot-voiding on the flange. On the basis of the results of tests and reviews, the optimum energy absorption capacity of the structure has been studied.

  • PDF

Collapse Characteristics of vehicle Members with Spot Welded Hat-Shaped Section under Axial Compression (점용접된 차체구조용 모자형 단면부재의 축방향 압궤특성)

  • 차천석;양인영;전형주;김용우;김정호
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.20-27
    • /
    • 2000
  • The hat shaped section members, spot welded strength resisting structures are the most energy absorbing ones of automobile components during the front-end collision. Under the static axial collapse load in velocity of 10mm/min and quasi-static collapse load in velocity of 1000mm/min, the collapse characteristics of the hat shaped section and double hat shaped section member have been analyzed by axial collapse tests with respect to the variations of spot weld pitches on the flanges. In addition, the quasi-static collapse simulations have been implemented in the same condition to the experiment's using FEM package, LS-DYNA3D. The simulated results have been verified in comparison with these from the quasi-static axial collapse tests. With the computational approaches the optimal energy absorbing structures can be suggested. Simulations are so helpful that the optimized data be supplied in designing vehicles in advance.

  • PDF

Buckling Behavior of Pultruded Composite Structural Member (인발성형 복합소재 구조부재의 좌굴특성 분석)

  • 이성우;김현정
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.67-74
    • /
    • 2000
  • Recently western countries are now beginning to use ACM (Advanced Composite Material) in the construction industry. Compared with conventional construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant properties, etc. Among other fabrication process of ACM, pultrusion is one of the promising one for civil infrastructure application. In this paper, the structural characteristics of pultruded glass fiber reinforced composite structural member of angle and tube type were studied. Experiments for compression were performed for those members along with finite element buckling analysis with ABAQUS. The experimental and analytic results were compared each other and they were also compared with predicted values using coded formulae.

  • PDF

An Experimental Study of Precast Concrete Alters Cement Types of High-Strength Concrete (시멘트종류를 변화시킨 프리캐스트 고강도 콘크리트의 실험적 연구 - 압축강도특성을 중심으로 -)

  • Park, Heung-Lee;Ki, Jun-Do;Kim, Sung-Jin;Lee, Hoi-Keun;Park, Byung-Keun;Jung, Jang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.65-68
    • /
    • 2009
  • Recently, as architectural concrete structures become high-rise and megastructured, concrete become high-strengthened and, by ensuring products of more stability, and rationalization of construction are required.large cross-sectional precast concrete members such as columns show large temperature increase in manufacturing process not only by external heating but also by concrete itself's hydration heating. Therefore, it is expected that specimen for management to predict strength and compression strength of precast concrete member shows different strength characteristics. Concerning this, in order to suggest strength characteristics of high strength mass concrete suitable for precast concrete application, this study comprises the inclusive investigations on the relations between core strength and the strength characteristics per member cross-section dimensional value and per water-bonding material ratio value.

  • PDF

Size Effect of Concrete Structures without Initial Cracks (초기균열이 없는 콘크리트 구조물의 크기에 따른 응력감소효과에 관한 연구)

  • Kim, Jin Keun;Park, Hong Kyee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.29-36
    • /
    • 1987
  • In most of the structural members with initial cracks, the strength tends to decrease as the member size increases. This phenomenon is known as size effect. Among the structural materials of glass, metal or concrete, etc., concrete represents the size effect even without initial crack. According to the previous size effect law, the concrete member of very large size can resist little stress. Actually, however, even the large size member can resist some stress if there is no initial notch. This means that the fracture mechanism of very small or very large size member follows strength criterion, but the medium size member follows non-linear fracture mechanics (NLFM). In this study, the empirical models which are derived based on nonlinear fracture mechanics are proposed according to the regression analysis with the existing test data of large size specimens for uni-axial compression test, splitting tensile test and shear test of reinforced concrete beams.

  • PDF

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

Performance Evaluation of Fiber-Reinforced Concrete Compression Members Transversely Constrained by BFRP (BFRP로 횡구속된 섬유 보강 콘크리트 압축부재의 성능평가)

  • Lee, Gyeong-Bok;Lee, Sang-Moon;Jung, Woo-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.607-616
    • /
    • 2022
  • Corrosion and degradation of reinforced structures due to abnormal climates and natural disasters further accelerate the aging of structures. Coping with the decrease in structure performance, many old structures are being repaired and reinforced with low-weight and high-strength materials such as glass fiber composite material (GFRP). To further contribute, this paper focus on a more economical and eco-friendly material, basalt fiber composite (BFRP), which provide a more effective lateral constraint effect for seismic reinforcement. The main variables considered in this study are the curing temperature during the manufacturing of BFRP and the material characteristics of the target concrete member. The lateral constraint reinforcement effect was investigated through the evaluation of the performance of normal concrete and those with improved durability through fiber reinforcement. The reinforcement effect was 3.15 times for normal concrete and 3.72 times for fiber reinforced concrete, and the difference in reinforcement effect due to the improvement of the durability characteristics of the compression member was not significant. Lastly, the performance of the BFRP was compared with the results of the GFRP reinforcement from the previous study. The effect of the BFRP reinforcement was 1.18 times better than that of the GFRP reinforcement.

Post-peak response analysis of SFRC columns including spalling and buckling

  • Dhakal, Rajesh P.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.311-330
    • /
    • 2006
  • Standard compression tests of steel fiber reinforced concrete (SFRC) cylinders are conducted to formulate compressive stress versus compressive strain relationship of SFRC. Axial pullout tests of SFRC specimens are also conducted to explore its tensile stress strain relationship. Cover concrete spalling and reinforcement buckling models developed originally for normal reinforced concrete are modified to extend their application to SFRC. Thus obtained monotonic material models of concrete and reinforcing bars in SFRC members are combined with unloading/reloading loops used in the cyclic models of concrete and reinforcing bars in normal reinforced concrete. The resulting path-dependent cyclic material models are then incorporated in a finite-element based fiber analysis program. The applicability of these models at member level is verified by simulating cyclic lateral loading tests of SFRC columns under constant axial compression. The analysis using the proposed SFRC models yield results that are much closer to the experimental results than the analytical results obtained using the normal reinforced concrete models are.