• 제목/요약/키워드: Compression ignition engines

검색결과 94건 처리시간 0.023초

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

EGR(배기재순환)에 따른 HCCI (균질혼합압축착화)기관의 엔진성능특성에 관한 연구 (A Study on Engine Performance Characteristics of a Homogeneous Charge Compression Ignition(HCCI) Engine According to Exhaust Gas Recirculation(EGR))

  • 최경호;한성빈
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.857-862
    • /
    • 2004
  • HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NOx and particulate matter(PM). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

Correlations for Predicting Viscosity of Vegetable Oils and Its Derivatives for Compression Ignition Engines

  • No, Soo-Young
    • 한국분무공학회지
    • /
    • 제14권3호
    • /
    • pp.122-130
    • /
    • 2009
  • Vegetable oil and its derivatives as an alternative diesel fuel have become more attractive recently because of its environmental benefits and the fact that they are made from renewable resources. Viscosity is the most significant property to affect the utilization of vegetable oil and its derivatives in the compression ignition engines. This paper presents the existing correlations for predicting the viscosity of vegetable oil and its derivatives for compression ignition engines. According to the parameter considered in the correlations, the empirical correlations can be divided into six groups: correlations as a function of temperature, of proportion, of composition, of temperature and composition, of temperature and proportion, and of fuel properties. Out of physical properties of fuel, there exist in the literature several parameters for giving the influence on kinematic viscosity such as density, specific gravity, the ratio of iodine value over the saponification value, higher heating value, flash point and pressure. The study for the verification of applicability of existing correlations to non-edible vegetable oil and its derivatives is required.

  • PDF

균질혼합압축점화기관의 배출가스특성에 관한 연구 (A Study on the Emissions of Homogeneous Charge Compression Ignition Engine)

  • 한성빈;최경호
    • 대한기계학회논문집B
    • /
    • 제28권3호
    • /
    • pp.324-329
    • /
    • 2004
  • As a new concept in engines and a power source for future automotive applications, the HCCI(Homogeneous Charge Compression Ignition) engine has been introduced. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NO$_x$ and PM emissions as well as high efficiency under part load. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The main parameters for this research are fuel flow rate and the temperature of the intake manifold, and the effects of such on a HCCI engine's performance and exhaust was investigated.

Basic Performance Characteristics of HCCI (Homogeneous Charge Compression Ignition) Engine

  • Choi Gyeung Ho;Chung Yon Jong;Kim Ji Moon;Dibbler Robert W.;Han Sung Bin
    • 에너지공학
    • /
    • 제14권4호
    • /
    • pp.226-231
    • /
    • 2005
  • Essentially combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The purpose of this research is to show the effects of fuel flow rate and the temperature of the intake manifold on the performance and exhaust of an HCCI engine.

EXPERIMENTAL STUDY ON HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE OPERATION WITH EXHAUST GAS RECIRCULATION

  • Choi, G.H.;Han, S.B.;Dibble, R.W.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.195-200
    • /
    • 2004
  • This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. Essentially a combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. The objective of this research is to determine the effects of Exhaust Gas Recirculation (EGR) rate on the combustion processes of HCCI. For this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders.

HCCI 엔진에서 엔진성능 및 배출에 미치는 EGR의 영향 (A Study on the Effects of EGR on Engine Performance and Emissions of a HCCI(Homogeneous Charge Compression Ignition) Engine)

  • 한성빈;장용훈
    • 대한기계학회논문집B
    • /
    • 제27권11호
    • /
    • pp.1630-1636
    • /
    • 2003
  • Automobile companies and research institutions in leading automobile-manufacturing nations have recently been very active with research regarding the HCCI engine for use in future vehicles. Because HCCI engines take advantage of high compression ratio and heat release rate, they exhibit high efficiency found in compression ignition engines. HCCI engines also utilize a lean air/fuel ratio resulting in low emissions of NO$_{x}$ and PM (particulate matter). The objective of this research is to determine the effects of EGR rate on the combustion processes of HCCI. for this purpose, a 4-cylinder, compression ignition engine was converted into a HCCI engine, and a heating device was installed to raise the temperature of the intake air and also to make it more consistent. In addition, a pressure sensor was inserted into each of the cylinders to investigate the differences in characteristics among the cylinders. The experimental study of the effects of EGR rate on various gas emissions, engine performance, etc. should prove to be a valuable source of information for the development of the HCCI engine.e.

급속압축장치를 이용한 노말헵탄.이소옥탄 혼합연료의 HCCI 연소특성에 대한 연구 (Experimental Study on HCCI Combustion Characteristics of n-heptane and iso-octane Fuel/air Mixture by using a Rapid Compression Machine)

  • 임옥택
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.167-175
    • /
    • 2011
  • The HCCI engines have been known with high efficiency and low pollution and can be actualized as the new internal combustion engines. However, As for(??) the ignition and combustion depend strongly on the oxidation reaction of the fuel, so it is difficult to control auto-ignition timing and combustion duration. Purpose of this paper is creating the database for development of multi-dimensional simulation and investigating the influence of different molecular structure. In this research, the effect of n-heptane mole ratio in fuel (XnH) on the ignition delay from homogeneous charge compression ignition(HCCI) has been investigated experimentally. By varying the XnH, it was possible to ascertain whether or not XnH is the main resource of ignition delay. Additionally, the information on equivalence ratio for varying XnH was obtained. The tests were performed on a RCM (Rapid Compression Machine) fueled with n-heptane and iso-octane. The results showed that decreasing XnH (100, 30, 20, 10,0), the ignition delays of low temperature reaction (tL) and high temperature reaction (tH) is longer. And the temperature of reaction increases by about 30K. n-heptane partial equivalence ratio (fnH) affect on tL.and TL. When ${\phi}$nH was increased as a certain value, tL was decreased and TL was increased.

4기통 디젤기관에 적용한 천연가스 예혼합 압축착화 기관의 연소특성 (Combustion Characteristics of Pre-mixed Charge Compression Ignition Engines with Natural Gas Applied to 4-Cylinders Diesel Engine)

  • 정석호
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.5-10
    • /
    • 2009
  • In recently, studies concerned to the diesel engine uses a natural gas as a fuel oil whose infra has been built already was approached to PCCI or HCCI with keeping a high thermal efficiency and reducing NOx and PM have been researching actively in normally single cylinder. An ignition source is required to bum the natural gas by a spark plug in gasoline engines, due to a higher auto-ignition temperature of natural gas. Then gas oil and DME were introduced as the ignition source. In this study as basic data for practical use of natural gas PCCI and HCCI engines, combustion characteristics and emission characteristics on 4-cylinders natural gas PCCI and HCCI engines with gas oil and DME as ignition sources were analyzed and the engine load range that is main object for practical use of PCCI and HCCI engines was made clearly by empirical experiment.

  • PDF

균질혼합압축점화기관의 배기가스재순환 특성에 관한 연구 (A Study on Exhaust Gas Recirculation of Homogeneous Charge Compression Ignition Engine)

  • 한성빈;김성모
    • 에너지공학
    • /
    • 제18권3호
    • /
    • pp.163-168
    • /
    • 2009
  • 이 논문은 새로운 개념의 엔진으로 균질혼합압축점화기관(HCCI)에 대해서 이야기 하고 있다. HCCI 엔진은 디젤기관과 가솔린기관의 미래대체엔진으로 고려되고 있다. HCCI엔진은 부분부하에서 높은 지시열효율과 매우 낮은 질소산화물을 배출하는 잠재력 있는 엔진이다.이 논문의 목적은HCCI 엔진에서 의 배기가스재순환(EGR)의 효과를 분명히 하는데 있다. 이러한 연구목적을 위해서 4실린더 압축점화기관이 HCCI 기관으로 개조가 되었다.이 작업은 일정한 회전속도에서 프로판과 부탄의 연료를 사용하였다.