• 제목/요약/키워드: Compression ignition diesel engine

검색결과 161건 처리시간 0.027초

2중연료(디젤+가솔린)의 RCCI 연소 및 배기 특성에 관한 실험적 연구 (An Experimental Study on Combustion and Exhaust Emissions Characteristics in RCCI (Reactivity Controlled Compression Ignition) of Dual-Fuel (Diesel+Gasoline))

  • 성기안
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.51-57
    • /
    • 2011
  • An experimental study was performed to explore characteristics of combustion and exhaust emissions in the compression ignition engine of RCCI (reactivity controlled compression ignition) using diesel-gasoline dual fuel. A dual-fuel reactivity controlled compression ignition concepts is demonstrated as a promising method to achieve high thermal efficiency and low emissions. For investigating combustion characteristics, engine experiments were performed in a light-duty diesel engine over a range of SOIs (start of injection) and gasoline percents. The experimental results showed that cases of diesel-gasoline dual fuel combustion is capable of operating over a middle range of engine loads with lower levels of NOx and soot, acceptable pressure rise rate, low ISFC (indicated specific fuel consumption), and high indicated thermal efficiency.

EGR율에 따른 예혼합 압축 착화 디젤 엔진의 연소 특성 (Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine with EGR System)

  • 이창식;이기형;김대식;허성근
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.66-72
    • /
    • 2002
  • A premixed charge compression ignition engine is experimentally investigated for the reduction of NOx and smoke emissions from diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentrations of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC emission was increased with the increase of premixed ratio. Also, when EGR system was applied to the PCCI diesel engine, the effect of EGR rate on the combustion characteristics and the exhaust gas emissions was discussed.

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

디젤 예혼합압축착화엔진에서 주연료 분사 후 점화 연료 분사 방법을 통한 점화 촉진과 배기가스 개선 효과 (Effects of Pilot Injection Method Following the Main Injection on Ignition Promotion and Exhaust Gas Reduction in a Diesel-Fueled HCCI Engine)

  • 국상훈;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-32
    • /
    • 2003
  • Diesel-Fueled HCCI(Homogeneous Charge Compression Ignition) Engine is an advanced combustion process explained as a premixed charge of diesel fuel and air is admitted into the cylinder and compression ignited. It has possibility to reduce NOx by spontaneous auto-ignition at multiple points that allows very lean combustion resulting in low combustion temperatures. Also PM could be reduced by the premixed combustion and no fuel-rich zones. But HCCI couldn't be realized because of the difficulties in vaporizing the diesel, control of combustion phase directly. To solve these problems, new fuel injection strategy, explained as the pilot fuel injection to promote ignition near TDC following the main fuel injection at the extremely advanced timing, is applied during the compression ratio is varied from 18.9:1 to 27.7:1 This is not a pilot fuel to promote the ignition but also the direct control method of the combustion phase. Experimental result shows the pilot fuel injection promote the ignition and the compression ignition of the HCCI engine is achieved as compression ratio becomes higher. Also there is an optimal pilot fuel injection timing for the HCCI combustion. NOx is reduced more than 90% compared to DI-Diesel case but PM and THC emission needs more investigation.

  • PDF

예혼합 압축 착화 디젤 엔진의 연소 특성 (Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine)

  • 이창식;이기형;김대식;장시웅
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.9-14
    • /
    • 2002
  • A homogeneous premixed charge compression ignition engine has been experimentally studied far the reduction exhaust emissions of diesel engines. In this study, the gasoline fuel is injected into the intake manifold to from homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.

2행정 디젤기관의 소기압력이 성능특성에 미치는 영향 (The Effect of Scavenging pressure on Performance Characteristics in Two-Stroke Diesel Engine)

  • 김기복
    • 한국산업융합학회 논문집
    • /
    • 제21권2호
    • /
    • pp.45-51
    • /
    • 2018
  • Compression ignition diesel engine can reduce carbon emission than gasoline engine in case of high efficiency, output and durability. So, compression ignition diesel engine is used in various fields such as automobiles, industries and so on. Due to reducing of emission exhaust by Developing of injection and combustion type of diesel engine, emission of pollution substance is developed compared the past. Moreover, its efficiency and reduce of carbon emission is better than gasoline engine and it is used in power source of industries, transports and others because of its high efficiency and durability nowadays. In this study, we experiment by making and designing of compression ignition diesel engine witch has air-cooling, 2 cylinder and 2 strokes.

예혼합 압축 착화 디젤 엔진의 연소 및 배기 특성 (Combustion and Emission Characteristics of Premixed Charge Compression Ignition Diesel Engine)

  • 허성근;김대식;이창식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2001년도 제22회 KOSCI SYMPOSIUM 논문집
    • /
    • pp.187-192
    • /
    • 2001
  • A homogeneous premixed charge compression ignition engine is experimentally investigated for the reduction of exhaust emissions in diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC and CO emissions were increased with the increase of premixed ratio. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.

  • PDF

DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구 (Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine)

  • 임옥택;표영덕;이영재
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.

직분식 디젤엔진에서 엔진 매개변수들이 NO 및 soot 배출에 미치는 영향에 대한 수치해석 연구 (Parametric Study for Reducing NO and Soot Emissions in a DI Diesel Engine by Using Engine Cycle Simulation)

  • 함윤영;전광민
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.35-44
    • /
    • 2002
  • Engine cycle simulation using a two-zone model was performed to investigate the effect of the engine parameters on NO and soot emissions in a DI diesel engine. The present model was validated against measurements in terms of cylinder pressure, BMEP, NO emission data with a 2902cc turbocharger/intercooler DI diesel engine. Calculations were made for a wide range of the engine parameters, such as injection timing, ignition delay, Intake air pressure, inlet air temperature, compression ratio, EGR. This parametric study indicated that NO and soot emissions were effectively decreased by increasing intake air pressure, decreasing inlet air temperature and increasing compression ratio. By retarding injection timing, increasing ignition delay and applying EGR. NO emission was effectively reduced, but the soot emission was increased.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.