• 제목/요약/키워드: Compression displacement

검색결과 433건 처리시간 0.023초

무전해 (니켈/금) 도금 처리된 단분산 가교고분자 미립자의 기계적 물성 연구 (Study for Mechanical Properties of Electroless (Ni/Au) Plated Monodisperse Polymer Particles)

  • 김동옥;진정희;손원일;오석헌
    • 폴리머
    • /
    • 제31권5호
    • /
    • pp.410-416
    • /
    • 2007
  • 무유화제중합으로 제조된 폴리(메틸 메타크릴레이트) (PMMA) 시드 고분자 미립자에 가교단량체인 HDDA (1,6-hexanediol diacrylate), triEGDMA [tri(ethylene glycol) dimethacrylate] 또는 triEGDMA와 EGDMA (ethylene glycol dimethacrylate)의 혼합액을 흡수시키고, 이를 중합하여 단분산 가교고분자 미립자를 제조할 시 1) 흡수된 가교단량체와 시드 고분자 미립자의 중량비(흡수율) 변화, 2) 가교단량체의 변화, 3) 무전해 니켈도금 및 4) 무전해 (니켈/금)도금에 따른 단분산 가교고분자 미립자의 기계적 물성인 탄성복원율, 압축탄성률, 파괴강도 및 파괴변형률의 변화를 MCT(micro compression test)를 사용하여 측정하였다. 이번 연구를 통해 가교단량체의 흡수율 증가는 가교고분자 미립자의 파괴강도에만 큰 영향을 미쳤으나, 가교고분자 미립자의 무전해 도금은 도금분체의 탄성복원율 및 파괴강도는 감소시키나, 파괴변형률의 경우에는 거의 영향을 미치지 않으며, 압축탄성률의 경우는 $K_{10}$$K_{20}$는 크게 증가시키나, $K_{30}$ 이후에는 거의 영향을 미치지 못함을 알 수 있었다.

압축과 전단 하중을 받는 인공 암석 절리의 수리적 거동에 관한 실험적 연구 (An Experimental Study for the Hydraulic Behavior of Artificial Rock Joint under Compression and Shear Loading)

  • 이희석;박연주;유광호;이희근
    • 터널과지하공간
    • /
    • 제10권1호
    • /
    • pp.45-58
    • /
    • 2000
  • 다양한 하중 조건하의 암석 절리에 대한 수리적 거동을 규명하기 위해서 수리전단 시험이 가능한 주기 전단시험 시스템을 설계, 제작하였다. 실험실에서 인공 절리 시료에 대한 압축,전단 조건하의 수리 시험을 실시하였다. 시험 전의 시료에 대한 3차원 간극 측정을 통해 절리의 간극 분포 특성을 규명하였다. 수직응력에 따른 투수계수 변화는 기존 수리 모델과 잘 일치하였다. 전단 하중하의 수리적 거동은 초기에는 팽창 특성을 따랐으며, 팽창의 증가에 따라 투수계수가 커겼다. 전단이 진행됨에 따라 유동률은 충전물 생성과 간극의 엇갈림으로 인해 다소 일정해졌다. 주기전단 하의 수리 거동 역시 돌출부 손상과 충전물 생성의 영향을 받았다. 또한 압축과 전단 하중하의 수리 간극과 역학 간극의 관계가 조사, 비교되었다.

  • PDF

열압착 접합 조건에 따른 경·연성 인쇄회로기판 간 Sn-58Bi 무연솔더 접합부의 기계적 특성 (Effects of Bonding Conditions on Mechanical Strength of Sn-58Bi Lead-Free Solder Joint using Thermo-compression Bonding Method)

  • 최지나;고민관;이상민;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.17-22
    • /
    • 2013
  • 본 연구에서는 Sn-58Bi 솔더를 이용한 경성 인쇄 회로 기판 (Rigid printed circuit board, RPCB)과 연성 인쇄회로 기판 (Flexible printed circuit board, FPCB) 간의 열압착 접합 시, 접합 조건에 따른 기계적 특성에 대하여 연구하였다. 접합 온도와 접합 시간을 변수로 열압착 접합을 실시하여 $90^{\circ}$ 필 테스트(Peel test)를 통해 접합 강도를 측정하고, 단면과 파단면을 관찰하였다. 접합 온도가 증가할수록 접합 강도가 증가하였으며, 접합 시간에 따른 접합 강도의 변화 또한 관찰할 수 있었다. 접합 시간이 증가하면서 접합부의 파괴에 영향을 미치는 요인이 솔더 층에서 금속간 화합물(Intermetallic compound, IMC) 층으로 변화하는 것을 관찰할 수 있었다. 필 테스트 과정의 F-x(Force-distance) curve를 통해 파괴 에너지를 계산하여 금속간 화합물이 접합 강도에 미치는 영향을 평가하였으며, 본 연구에서 $195^{\circ}C$, 7초 조건이 접합 강도와 파괴 에너지가 가장 높게 나타나는 최적 접합 조건으로 도출되었다.

Sn-Pb 솔더를 이용한 경연성 인쇄 회로 기판간의 열압착 본딩 (Thermo-compression Bonding of Electrodes between RPCB and FPCB using Sn-Pb Solder)

  • 최정현;이종근;윤정원;정승부
    • 마이크로전자및패키징학회지
    • /
    • 제17권3호
    • /
    • pp.11-15
    • /
    • 2010
  • 본 연구에서는 Sn-Pb 솔더를 이용한 열압착법을 이용하여 경성 인쇄 회로 기판 (rigid printed circuit board, RPCB)과 연성 인쇄 회로 기판 (flexible printed circuit board, FPCB)간 접합 시의 접합 조건을 최적화하는 연구를 진행하였다. 접합의 주요 변수로는 접합 압력, 온도 및 시간이 있으며 이러한 변수의 변화로 인해 접합부의 접합 형태와 박리 강도에서 많은 차이가 발생하는 것을 확인할 수 있었다. 또한 일정 접합 온도와 시간 조건 ($225^{\circ}C$, 7초)에서 22 N/cm의 최고 박리 강도를 보이며 이후로는 더 이상 박리 강도에서 큰 차이를 보이지 않게 되는데, 이를 박리 시험 시의 F-x (forcedisplacement) curve를 토대로 파괴 에너지를 산출하여 그 차이를 규명하였다. 최적의 접합 조건은 $225^{\circ}C$, 7초로 나타났다.

LPG 엔진에서 수소첨가에 따른 배기 성능과 열효율에 미치는 영향 (Effects of hydrogen-enriched LPG fuelled engine on exhaust emission and thermal efficiency)

  • Kim, jinho;Cho, unglae;Choi, gyeungho
    • 한국수소및신에너지학회논문집
    • /
    • 제12권3호
    • /
    • pp.169-176
    • /
    • 2001
  • The purpose of study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The test engine was named heavy-duty variable compression ratio single cylinder engine (VCSCE). The fuel supply system provides LPG/hydrogen mixtures based on same heating value. Various sensors such as crank shaft position sensor (CPS) and hall sensor supply spark timing data to ignition controller. Displacement of VCSCE is $1858.2cm^3$. VCSCE was runned 1400rpm with compression ratio 8. Spark timing was set MBT without knocking. Relative air-fuel ratio(${\lambda}$) of this work was varied between 0.76 and 1.5. As a result, i) Maximum thermal efficiency occurred at ${\lambda}$ value 1.0. It was shown that thermal efficiency was increased approximately 5% with hydrogen enrichment at same ${\lambda}$ value. ii) Engine-out carbon monoxide (CO) emissions were decreased at a great rate under LPG/hydrogen mixture fuelling. iii) Total hydrocarbon (THC) emission was much exhausted in rich zone, same as CO. But THC was exhausted a little bit more in lean zone. iv) Finally, engine-out oxides of nitrogen (NOx) was increased with ${\lambda}$ value 1.0 zone at a greater rate with hydrogen enrichment due to high adiabatic flame temperature.

  • PDF

하악골 과두하부 골절 실험모델에서 견고정을 위한 플레이트 고정방법 연구 (Study of the Plating Methods in the Experimental Model of Mandibular Subcondyle Fracture)

  • 이원;강동희
    • 대한두개안면성형외과학회지
    • /
    • 제12권1호
    • /
    • pp.12-16
    • /
    • 2011
  • Purpose: This study examined the biomechanical stability of four different plating techniques in the experimental model of mandibular subcondyle fracture. Methods: Twenty standardized bovine tibia bone samples ($7{\times}1.5{\times}1.0cm$) were used for this study. Each of the four sets of tibia bone was cut to mimic a perpendicular subcondyle fracture in the center area. The osteotomized tibia bone was fixed using one of four different fixation groups (A,B,C,D). The fixation systems included single 2.0 mm 4 hole mini adaption plate (A), single 2.0 mm 4 hole dynamic compression miniplate (B), double fixation with 2.0 mm 4 hole mini adaption plate (C), double fixation with a 2.0 mm 4 hole mini adaption plate and 2.0 mm 4 hole dynamic compression miniplate (D). A bending force was applied to the experimental model using a pressure machine (858 table top system, $MTS^{(R)}$) until failure occurred. The load for permanent deformation, maximum load of failure were measured in the load displacement curve with the chart recorder. Results: Double fixation with a 2.0 mm 4 hole mini adaption plate and a 2.0 mm 4 hole dynamic compression miniplate (D) applied to the anterior and posterior regions of the subcondyle experimental model showed the highest load to failure. Conclusion: From this study, double fixation with an adaption plate and dynamic compression miniplate fixation technique produced the greatest biomechanical stability. This technique may be considered a useful means of fixation to reduce the postoperative internal maxillary fixation period and achieve early mobility of the jaw.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

아말감 와동의 파절에 관한 3차원 유한요소법적 연구 (A STUDY ON AMALGAM CAVITY FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD)

  • 김한욱;엄정문;이정식
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.345-371
    • /
    • 1994
  • Restorative procedures can lead to weakening tooth due to reduction and alteraton of tooth structure. It is essential to prevent fractures to conserve tooth. Among the several parameters in cavity designs, cavity isthmus and depth are very important. In this study, MO amalgam cavity was prepared on maxillary first premolar. Three dimensional. finite element models were made by serial photographic method and cavity depth(1.7mm, 2.4mm) and isthmus (11 4, 1/3, 1/2 of intercuspal distance) were varied. linear, eight and six-nodal, isoparametric brick elements were used for the three dimensional finite element model. The periodontal ligament and alveolar bone surrounding the tooth were excluded in these models. Three types model(B, G and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall. Both compressive and tensile forces were distributed directly to the adjacent regions. G model(Gap Distance: 0.000001mm) was assumed the possibility of play at the interface simulated the lack of real bonding between the amalgam and cavity wall (enamel and dentin). When compression occurred along the interface, the forces were transferred to the adjacent regions. However, tensile forces perpendicular to the interface were excluded. R model was assumed non-connection between the restoration and cavity wall. No force was transferred to the adjacent regions. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, von Mises stress, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows: 1. G model showed stress and strain patterns between Band R model. 2. B model and G model showed the bending phenomenon in the displacement. 3. R model showed the greatest amount of the displacement of the buccal cusp followed by G and B model in descending order. G model showed the greatest amount of the displacement of the lingual cusp followed by B and R model in descending order. 4. B model showed no change of the displacement as increasing depth and width of the cavity. G and R model showed greater displacement of the buccal cusp as increasing depth and width of the cavity, but no change in the displacement of the lingual cusp. 5. As increasing of the width of the cavity, stress and strain were not changed in B model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in G and R model. The possibility of the tooth fracture was increased. 6. As increasing of the depth of the cavity, stress and strain were not changed in B and G model. Stress and strain were increased on the distal marginal ridge and buccopulpal line angle in R model. The possibility of the tooth fracture was increased.

  • PDF

Mid-length lateral deflection of cyclically-loaded braces

  • Sheehan, Therese;Chan, Tak-Ming;Lam, Dennis
    • Steel and Composite Structures
    • /
    • 제18권6호
    • /
    • pp.1569-1582
    • /
    • 2015
  • This study explores the lateral deflections of diagonal braces in concentrically-braced earthquake-resisting frames. The performance of this widely-used system is often compromised by the flexural buckling of slender braces in compression. In addition to reducing the compressive resistance, buckling may also cause these members to undergo sizeable lateral deflections which could damage surrounding structural components. Different approaches have been used in the past to predict the mid-length lateral deflections of cyclically loaded steel braces based on their theoretical deformed geometry or by using experimental data. Expressions have been proposed relating the mid-length lateral deflection to the axial displacement ductility of the member. Recent experiments were conducted on hollow and concrete-filled circular hollow section (CHS) braces of different lengths under cyclic loading. Very slender, concrete-filled tubular braces exhibited a highly ductile response, undergoing large axial displacements prior to failure. The presence of concrete infill did not influence the magnitude of lateral deflection in relation to the axial displacement, but did increase the number of cycles endured and the maximum axial displacement achieved. The corresponding lateral deflections exceeded the deflections observed in the majority of the previous experiments that were considered. Consequently, predictive expressions from previous research did not accurately predict the mid-height lateral deflections of these CHS members. Mid-length lateral deflections were found to be influenced by the member non-dimensional slenderness (${\bar{\lambda}}$) and hence a new expression was proposed for the lateral deflection in terms of member slenderness and axial displacement ductility.

룸바 쿠카라차 동작의 운동학적 분석 (Kinematics Analysis of Rumba Cucarachas Motion)

  • 최인애
    • 한국운동역학회지
    • /
    • 제14권1호
    • /
    • pp.145-160
    • /
    • 2004
  • The purposes of this study to provide quantitative data in necessary to advance techniques kinematic analysis of Cucarachas which is an action of Rumba. Then, this study is performed on 5 female players who have won within the third prize at a national athletic meeting. When whole foot reached to floor, Displacement of right-left hip joint (until $E1{\sim}E3$ average moved 15.15cm)is found at right-left direction since the hip joint is turned to right back. On the other side, large displacement is shown because Rumba Cucaracha Movement is expressed by maximum shift of hip joint to right and left direction. Displacement of right hip joint(E3$57.40{\pm}7.46$) is found in front and in rear direction since hip joint is moved in rear and in front to turn the hip joint. It may be stated that this is ideal displacement expressed by movement of whole body with artistic poise and presentation because role of hip joint is very important in technical and artistic side. Angle of right shoulder joint E2($105.44{\pm}9.64$) is got wider. It may be stated that player shifts up and abduct elbow joint to right since center of gravity of player is exceedingly shifted to right in this motion of Cucarachas. On the other hand, since this motion is abducted right elbow and shrunk external abdominal oblique to him center of body to left front of hip joint, the angle becomes narrow. It is shown that angle of knee in right knee joint E4($75.44{\pm}2.61$) is large since right leg and hip joint is turned by foot using reaction of ground and so center of body is shifted to left. Large angle of ankle E4($134.40{\pm}10.50$) in Cucaracha Movement is shown by the action of twist force using narrow part of foot and compression force against ground with adduction speed of arm. The various kinematic analyses associated with motions of dance sport have not been sufficiently peformed so far, and thus a number of research projects for dance sport should be proposed and performed to be continuous.