• 제목/요약/키워드: Compression after impact

검색결과 61건 처리시간 0.025초

항공기 복합재료 적용 시편의 압축 강도 연구 (A Study on Compressive Strength of Aircraft Composite Specimens)

  • 공창덕;박현범;김상훈;이하승
    • 항공우주시스템공학회지
    • /
    • 제3권1호
    • /
    • pp.12-16
    • /
    • 2009
  • The laminated sequence and thickness of a composite structure is an important design parameter which affect the strength and impact damage. In this study, it was investigated the residual strength of carbon fiber laminate after impact damage by the experimental investigation. The tensile strength test and compressive strength test were used to find the mechanical properties, previously. Impact test was performed using low-velocity drop-weight test equipment. The impact damages were finally assessed by the compressive strength test. The investigation results revealed the residual strength of the damaged specimens due to the impact damage.

  • PDF

충격후 잔류압축강도시험에 의한 복합재료 적층판의 설계 (A Design Guide for Composite Laminates by the Compressive after Impact Tests)

  • 정태은;박경하;류정주
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2105-2113
    • /
    • 1995
  • The compressive tests under impact conditions were performed to establish a design guide for impact damage tolerance. The composition of layup was selected for the real cases of composite aircraft structure. The energy level of visible of visible damage threshold was determined as 7 Joules. It was found that the normalized bending stiffnesses in the direction of closely fixed boundary affected the area of damage. Graphite/epoxy used in the tests exhibited 60% reduction in compression strength at the energy level of visible damage threshold. Wet-conditioned specimens represented 9% reduction in residual compressive strength in comparison with room temperature ambient specimens. In this study, a design factor of 2.1 was proposed for the low velocity impact damage.

고속충격을 받는 외장 UHPC 패널의 내충격성능 (Impact Resistance of UHPC Exterior Panels under High Velocity Impact Load)

  • 강현구;김상희;김민수;홍성걸
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.455-462
    • /
    • 2016
  • 본 실험적 연구는 고속 비상체 충돌 시 UHPC 외장재의 내충격성을 파악하는데 그 목적이 있다. 이 연구에서는 두께를 주요 변수로 UHPC과 화강암 패널 실험체에 고속충격을 가하여 실험체의 성능을 비교하였으며, 배면의 변형률을 기록하였다. UHPC는 외관이 우수하였으며, 내충격성도 화강암에 비해 우수하여 외장재로 사용하기에 적당하다고 판단된다. 비상체가 시험체에 충돌한 후 압축파가 배면에 도달하고 그 후 자유단 지점을 중심으로 인장파가 발생하여서 배면파괴를 일으킨 것으로 사료된다. 이러한 배면파괴 발생 메커니즘은 변형률 기록이 압축파구간, 보합구간, 인장구간으로 나누어지는 것을 통해 알 수 있다. 관통파괴 형태를 살펴보면 고속 충돌 시 전단력이 배면에 작용하여 파괴가 발생되는 shear plug 현상이 나타난 것으로 판단된다. 즉 충격하중에 대하여 배면의 파괴는 전단력과 인장응력에 의해 동시에 영향을 끼쳐 발생한 것으로 사료된다.

사과 및 배의 기계적 특성 (Mechanical Properties of Apple and Pear)

  • 김만수;정현모;박종민;이영희
    • Journal of Biosystems Engineering
    • /
    • 제24권3호
    • /
    • pp.243-252
    • /
    • 1999
  • The damage caused in the processes and distributions after harvesting the fruits and vegetables is attributed to the mechanical factors such as compressive and impact forces. Compression tests of biological materials provide an objective method for determining the apparent modulus of elasticity and mechanical properties which are significant in quality evaluation and control, and them maximum allowable compressive forces for minimizing mechanical damage. This study was performed to determine the mechanical properties of apple and pear, and to investigate effect of specimen shapes on the mechanical properties of them. A computer program was developed for measuring the mechanical properties and analyzing the data obtained from the measurement. Compression tests on the sample were performed with then replications at each treatment and at 25 mm/min loading rate. Mechanical properties of the apple was generally shown the higher value than those of the pear, and it was though that data obtained form the cylindrical specimen removed from the sample was more reliable than from the specimen cut in half.

  • PDF

반복 충격이 유리섬유 강화 폴리우레탄 폼의 기계적 성능에 미치는 영향 (Effect of Repetitive Impacts on the Mechanical Behavior of Glass Fiber-reinforced Polyurethane Foam)

  • 김명성;김정현;김슬기;이제명
    • 한국해양공학회지
    • /
    • 제33권1호
    • /
    • pp.85-91
    • /
    • 2019
  • In a cryogenic storage structure, the insulation system is in an environment in which fluid impact loads occur throughout the lifetime of the structure. In this study, we investigated the effect of repetitive impact loading on the mechanical performance of glass fiber-reinforced polyurethane foam. The repeated impact loading test was conducted in accordance with the required impact energy and the required number of repetitive impacts. The impact behavior of glass fiber-reinforced polyurethane foam was analyzed in terms of stress and displacement. After the impact test, the specimen was subjected to a compression test to evaluate its mechanical performance. We analyzed the critical impact energy that affected mechanical performance. For the impact conditions that were tested, the compressive strength and elastic modulus of the polyurethane foam can be degraded significantly.

4340강의 단열 전단밴드생성에 대한 유한요소해석 및 실험적 고찰 (Finite element analysis and experiment on the formation of adiabatic shear band in 4340 steel)

  • 정동택;유요한
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1134-1143
    • /
    • 1994
  • A study of adiabatic shear band formation and propagation of 4340 steel was done using the stepped speciment which was subjected to high velocity impact. The high velocity impact was performed on compression Hopkinson bar impact machine. After the controlled impact, the specimen was prepared for visual inspection. Numerical simulation was also performed with same geometrical dimension using explicit time integration finite element code. Experimental results were then compared with the numerical prediction. It was found that the numerical prediction is quite accurate, average thickness of adiabatic shear band is about $10{\mu}m$, the macro crack around shoulder is due to folding, and the deformation control ring is effective to freeze the propagation of adiabatic shear band.

선 충격 량과 공의 회전 속도와의 상관관계 (Correlation between the linear impulse and ball spin rate)

  • 노우진;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.870-874
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

  • PDF

선 충격량과 공의 회전 속도와의 상관관계 (Correlation between the Linear Impulse and Ball Spin Rate)

  • 노우진;이종원
    • 한국소음진동공학회논문집
    • /
    • 제17권11호
    • /
    • pp.1127-1132
    • /
    • 2007
  • Golf ball spin rate after impact with club is created by the contact force, which is greatly influenced by ball and club mass, material, impact speed, and club loft angle. Previous studies showed that the contact force is determined as the resultant force of the reaction forces normal and tangential to the club face at the contact point. The normal force causes the compression and restitution of the ball, and the tangential force creates the spin. Especially, the tangential force takes either positive or negative values as the ball rolls and slides along the club face during impact. Although the positive and negative tangential forces are known to create and reduce the back spin rate, respectively, the mechanism of ball spin creation has not yet been discussed in detail. It is shown in this work that the linear impulse of the tangential force is directly related to generation of back spin rate of golf ball. The linear impulse can be calculated from the tangential force, which depends upon many factors such as ball and club mass, material, impact speed, and club loft angle. In this research, the influence of the contact force between golf club and ball is investigated to analyze the mechanism of impact. For this purpose, the contact force and the contact time at impact between golf club head and ball are computed using FEM.

압축비에 의한 엔진 출력 변화 특성 (The Compression Ratio Change Characteristics of Engine Horse Power Characteristics)

  • 양현수;임주헌
    • 대한안전경영과학회지
    • /
    • 제10권2호
    • /
    • pp.85-94
    • /
    • 2008
  • The object of this study is to investigate the penetration characteristics according to the change of stacking sequences and curvature radius in the composite laminated shell. They are staked to [02/902]S and [0/902/0]s, their interlaminar number are two and four. We are manufactured to composite laminated shells with various curvature radius. Curvature radius of composite shell is 100, 150, 200mm and ${\infty}$(it's meaning flat-plate). In general, kinetic energy after impact-kinetic energy before impact increased linearly in all specimens. Absorbed energy increased linearly as the curvature increased, and absorbed energy of [02/902]S specimen, which is small interlaminar number, was higher than [0/902/0]s specimen.

재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구 (Material property evaluation of high strength concrete using conventional and nondestructive testing method)

  • 조영상
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF