• Title/Summary/Keyword: Compression absorption

Search Result 205, Processing Time 0.023 seconds

Comparison of Physicochemical and Sensory Characteristics of Soybean Sprouts from Different Cultivars (나물콩 품종별 콩나물의 물리화학적 및 관능적 특성 비교)

  • Kim, Sung-Soo;Hong, Hee-Do;Lee, Jin-Yeol;Choi, Hee-Don
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.207-212
    • /
    • 2000
  • Physicochemical and sensory characteristics of soybean sprouts from domestic and foreign soybean cultivars were investigated. 100-seed weights of domestic cultivars were much larger than that of Canadian cultivar and recommended cultivars were larger than traditional cultivars. Water absorption of soybeans increased sharply to initial 6 hrs during steeping, and did not change much thereafter. In all soybean cultivars 16 amino acids were detected and the contents of Asp, Glu, Lys and Arg were more than 50% of total amino acid contents. All soybean cultivars showed some difference in composition of fatty acids and the content of linoleic acid was highest. The contents of K and P were high and those of Fe and Zn were low. The compression force of hypocotyl after cultivation was the highest in Eunha and the lowest in Junjeori and the compression force of cotyledon was the highest in Danyeop and the lowest in Canadian cultivar. Qualitative discription analysis for cooked soybean sprouts and soups showed significant difference in 6 characteristics of yellowness of cotyledon, size of cotyledon and so on.

  • PDF

Experimental Study on the Triaxial Compressive Behaviour of Unsaturated Compacted Silt under Various Suction Levels (다양한 석션 레벨에서의 불포화실트의 삼축압축거동에 관한 실험적 연구)

  • Kim, Young-Seok;Oka, Fusao
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.25-35
    • /
    • 2008
  • It has been recognized that the behaviour of unsaturated soil plays an important role in geomechanics. However, up to now, only a few experimental data are available for the technical difficulties related to both volume changes and suction measurements. In this study, the volume changes of unsaturated compacted silty soil were monitored with proximeter during various triaxial compression tests, which gave a realistic estimation in the volume changes of unsaturated soil sample. From the test results, the behaviours of wetting-induced collapses are observed during the drainage/water absorption tests. Under exhausted-drained conditions during shearing, the shear strength increases with an increasing initial suction. On the other hand, the volume changes become small with an increase in the initial suction. And, the volumetric strain during shearing is independent of the confining pressure.

A Study on Variation of Rock Strength due to Weathering and It도s Estimation (암석의 풍화에 따른 강도변화 특성 및 강도추정에 관한 연구)

  • 정형식;유병욱
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.71-94
    • /
    • 1997
  • It is important to evaluate rock strength in order to check stability of a rock slope or to design a structure built on rock. However, test methods used for the evaluation have some difficulties since rock samples provide various deviation of strength due to micro cracks in the samples and teat errors, Also, reliable data have not been accumulated for the rock strength in Korea. Therefore, simple teat methods that can be used easily for investication of rock strength in field or in laboratory are not provided sufficiently yet. This study is to investigate variation of the rock strength due to the degree of weathering and to evaluate the degree of weathering by types of rocks, by using data that have been obtained for several years. Therefore, it is possible to provide a relationship between several rock strength values by performing tests such as uniaxial compression teat, point load test, schmidt hammer teat, absorption ratio best and slaking durability tests. The equations of relationships that can be used to estimate rock strength by using simple test methods in field and in laboratory are proposed.

  • PDF

Water Absorbtion Controlling Type Surface Treatment Method for Quality Enhancement of Recycled Aggregate (순환골재 품질개선을 위한 수분흡수제어형 표면처리방법)

  • Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.561-567
    • /
    • 2015
  • The research, in order to enhance the quality of recycled aggregate, was carried out the quality characteristics test of the recycled aggregates by applying the four kinds of surface treatment using a colloidal suspension of approximately 5nm~60nm particle size with the alkalinity of pH 10.2. The quality tests of recycled aggregate have been processed by specific gravity, water absorption, porosity, surface properties, and the compression and tensile tests. The colloidal suspension was coated effectively the surface of the old cement mortars of recycled aggregate with a constant thickness by colloidal suspension is being applied to the recycled aggregate surface under constant pressure of 100kpa and then it was dried in at $60^{\circ}C$. The surface treatment method by the Method C out of 4 kinds of surface treatment improved effectively the quality of the recycled aggregates, whereby it obtained the best compressive strength and tensile strength of the recycled aggregate concrete.

A study on Production of Al Foam by Using of Al Return Scrap for Sound and Vibration Absorption Materials

  • Hur, Bo-Young;Kim, Sang-Youl;Park, Dae-Chol;Jeon, Sung-Hwan;Park, Chan-Ho;Yoon, Ik-Sub
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.198-201
    • /
    • 2001
  • Porous structures of aluminum foam have been studied by using return aluminum scrap. The apparent foam shape, foam height, density, pore size and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot and return aluminum scrap mixed with various amounts of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manipulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. A metal for producing the foamed are decomposing a foaming agent in a molten metal such that there is an initial and a subsequent expansion due to foaming agent. It has been found that the Al porous foaming with variation amount of 1∼2wt% foam agent and at 2min holding time, which melting temperature has appeared homogeneous pore size at 650∼700$^{\circ}C$. The compression strength were 10-13 kg/min at 125ppi, and increased by higher pore density. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

  • PDF

Influence of Flowability of Ceramic Tile Granule Powders on Sintering Behavior of Relief Ceramic Tile (과립분말 유동성 변화가 부조세라믹타일의 소결거동에 미치는 영향)

  • Shin, Cheol;Choi, Jung-Hoon;Kim, Jung-Hun;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.550-557
    • /
    • 2020
  • Used in the ceramic tile market as a representative building material, relief ceramic tile is showing increased demand recently. Since ceramic tiles are manufactured through a sintering process at over 1,000 ℃ after uniaxial compression molding by loading granule powders into a mold, it is very important to secure the flowability of granular powders in a mold having a relief pattern. In this study, kaolin, silica, and feldspar are used as starting materials to prepare granule powders by a spray dryer process; the surface of the granule powders is subject to hydrophobic treatment with various concentrations of stearic acid. The effect on the flowability of the granular powder according to the change of stearic acid concentration is confirmed by measuring the angle of repose, tap density, and compressibility, and the occurrence of cracks in the green body produced in the mold with the relief pattern is observed. Then, the green body is sintered by a fast firing process, and the water absorption, flexural strength, and durability are evaluated. The surface treatment of the granule powders with stearic acid improves the flowability of the granule powders, leading to a dense microstructure of the sintered body. Finally, the hydrophobic treatment of the granule powders makes it possible to manufacture relief ceramic tiles having a flexural strength of 292 N/cm, a water absorption of 0.91 %, and excellent mechanical durability.

Effect of Nanomesh Structure Variation on the Friction and Wear Characteristics of Carbon Nanotube Coatings (탄소나노튜브 코팅의 마찰/마모 특성에 대한 나노메쉬 구조의 영향)

  • Kim, Hae-Jin;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.315-319
    • /
    • 2020
  • In various fields, several studies based on carbon nanotubes (CNTs) have been conducted. The results of previous studies, wherein CNT coatings have been incorporated as solid lubricants, demonstrate that the friction and wear characteristics of CNT coatings can be improved through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure comprising CNT strands. In this study, the friction and wear characteristics of the following are compared: CNT coating formed by spin coating of CNT solution, compressed CNT coating, and compressed/heated CNT coating (wherein CNT strands are squeezed through compression and/or heating). It is observed that the friction coefficient of the CNT coating having the largest number of voids between the CNT strands is significantly lower than those of the compressed CNT coating and the compressed/heated CNT coating. The wear tracks of the compressed CNT coating and the compressed/heated CNT coating indicate that some parts become torn or adhere into a lump. However, in the case of the CNT coating, a smooth wear surface is formed by rubbing. Furthermore, as the void space between the squeezed and adhered CNT strands decreases, the resistance to structural deformation increases, thereby resulting in an increased frictional force and a wear pattern that becomes torn or forms a lump. Hence, the results obtained from this study corroborate that the friction and wear characteristics of CNT coatings can be enhanced through the absorption/dispersion of the contact pressure by controlling the stiffness of the nanomesh structure of CNT coatings.

Studies on Thickness Swelling Mechanism of Wood Particle-Polypropylene Fiber Composite by Scanning Electron Microscopy

  • Lee, Chan Ho;Cha, Jae Kyung;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.48-58
    • /
    • 2002
  • This study was carried out through scanning electron microscopy to elucidate the mechanism of thickness swelling in wood particle-polypropylene composite which is a typical way of using wood and plastic materials. For this purpose, control particleboards and nonwoven web composites from wood particle and polypropylene fiber formulations of 100:0, 70:30, 60:40, and 50:50 were manufactured at target density levels of 0.5, 0.6, 0.7, and 0.8 g/cm3. Their water absorption and thickness swelling were tested according to ASTMD 1037-93 (1995). To elucidate thickness swelling mechanism of composite through the observation of morphological change of internal structures, the specimens before and after thickness swelling test by 24-hour immersion in water were used in scanning electron microscopy. From the scanning electron microscopy, thickness swelling of composite was thought to be caused by the complicated factors of degree of built-up internal stresses by mat compression and/or amount of wood particles encapsulated with molten polypropylene fibers during hot pressing. In the composites with wood particle contents of 50 to 60% at target densities of 0.5 to 0.8 g/cm3 and with wood particle content of 70% at target densities of 0.5 to 0.7 g/cm3, thickness swellings seemed to be largely dependent upon the restricted water uptake by encapsulated wood particles with molten polypropylene fibers. Thickness swelling in the composite with wood particle content of 70% at target density of 0.8 g/cm3, however, was thought to be principally dependent upon the increased springback phenomenon by built-up internal stresses of compressed mat.

Application of EPS Considering Long-term Durability (장기내구성을 고려한 EPS의 현장 적용성)

  • Chun, Byungsik;Jung, Changhee;Ahn, Jinhyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.53-60
    • /
    • 2007
  • L/EPS, manufactured in the shape of block and used for civil engineering, is a lightweight material with an excellent resistance to compression, and provides a superb self-sufficient stability. EPS is a suitable material capable of resolving the problem of settlement and lateral flow if it is applied as the soil on soft ground. The Korean Standards (KS) has not yet proposed any testing method for use of EPS as an engineering banking material. Only its testing and quality ordinance as a heat insulation material has been standardized. The design criteria for EPS has been established and applied through the trial construction of KHC (Korea Highway Corporation) and quality test of manufacturer, but most studies on them have been confined to factory products. This study is focused on comparing and analyzing long-term durability by conducting cyclic load test, freezing and thawing test, absorption rate test and others. EPS used in the test was chosen from construction sites and factory products, focusing on the long-term durability of EPS depending on the passage of time. Unconfined compression test results indicated that the strength of collected samples was lower than factory products. While the triaxial compression test results indicated that the shear strength increased in proportion to the increase of confining pressure, and factory products had declining shear strength as the confining pressure rose.

  • PDF

Effects of Functional Packaging Films on the Longevity of Cut Lily Oriental Siberia Exported (기능성 포장필름이 수출 절화 백합의 수명에 미치는 영향)

  • Ko, Euisuk;Song, Kihyeon;Cho, Suhyun;Jeon, Kyubae;Kim, Chanwoo;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.2
    • /
    • pp.55-60
    • /
    • 2015
  • Packaging of export cut lilies reduces physical damage during distribution like dropping, shock, vibration, compression and serves to protect from necrosis, microbial contamination and decomposition. Study on which packaging materials must be selected is necessary because it serves to direct effect maintaining quality and the degree of freshness. newspaper, perforated OPP film, Oriented Nylon film (ON), punched OPP film, OPP films are used in this study. Plant senescence of lilies was happened rapidly during storage at $25^{\circ}C$ rather than at $5^{\circ}C$. Also, water absorption, fresh weight at during storage $25^{\circ}C$ rather than at $5^{\circ}C$ In addition, fresh weight of lilies storage at $25^{\circ}C$ appears higher than at $5^{\circ}C$ all of the packaging materials except OPP because water absorption of lily storage at $5^{\circ}C$ appears higher than at $25^{\circ}C$, thereby suppressing the fresh weight reducing Also, effect on biological activity of lilies from shape of packaging material appears higher during storage at $5^{\circ}C$ than at $25^{\circ}C$. Compared with each packaging materials, newspaper packaging is the smallest effect on changes in biological activity of cut lilies during storage. Thus, the results demonstrate that flowering date are affected mainly by the storage temperature rather than packaging materials.

  • PDF