A study on Production of Al Foam by Using of Al Return Scrap for Sound and Vibration Absorption Materials

  • Published : 2001.10.01

Abstract

Porous structures of aluminum foam have been studied by using return aluminum scrap. The apparent foam shape, foam height, density, pore size and their distributions in various section areas of the experimental samples have been investigated. The sample have been cast into metallic mold, using aluminum foam prepared from a precursor based on pure Al ingot and return aluminum scrap mixed with various amounts of 1-2wt% increasing viscosity and foam agent materials. The process provides for flexibility in design of foam structures via relatively easy control over the amount of hydrogen evolution and the drainage processes which occur during foam formation. This is facilitated by manipulating parameters such as the foaming agent, thermal histories during solidification and mix melt viscosities. A metal for producing the foamed are decomposing a foaming agent in a molten metal such that there is an initial and a subsequent expansion due to foaming agent. It has been found that the Al porous foaming with variation amount of 1∼2wt% foam agent and at 2min holding time, which melting temperature has appeared homogeneous pore size at 650∼700$^{\circ}C$. The compression strength were 10-13 kg/min at 125ppi, and increased by higher pore density. The acoustical performance of the panel made with the foamed aluminum is considerably improved; its absorption coefficient shows NRC 0.6-0.8. It has been found that the Al foam is very preferable for the compactness of the thermal system.

Keywords