• Title/Summary/Keyword: Compression Tests

Search Result 1,548, Processing Time 0.027 seconds

The Study of Secondary Compression Index on Soft Clays (점성토의 2차압축지수에 관한 연구)

  • 윤일형;서정석;도헌영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.537-544
    • /
    • 2002
  • Deformations of clays continue beyond the end of primary consolidation: this is secondary consolidation. Mesri(1973) have shown that C $\_$a/' is related to the natural water content W$\_$n/. For clays, C $\_$a/' is approximately equal to 0.01 W $\_$n/. And the ratio C $\_$ae// C $\_$c/ is approximately equal to 0.04. In this study, coefficient of secondary compression was analyzed by the consolidation tests datas in the 3 sites. In conclusion, coefficient of secondary compression was similar to Mesri's suggestions.

  • PDF

Evaluation of JPEG2000 Compression Algorithm for Satellite Image

  • Kim, Kwang-Yong;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.88-88
    • /
    • 2002
  • Satellite Image archiving system requires large storage and long transmission time. A simple and cheap way of overcoming these limitations is to increase the compression ratio. However this requires a feasibility study for accurate applications. Here, a new still image compression standard is being developed, the JPEG2000. It provides lossless and lossy compression, progressive transmission by pixel accuracy and by resolution, region-of-interest coding, user-defined tiling size, random codestream access and processing etc. In this study, we will briefly introduce the JPEG2000 compression standard which provides a new compression technique based on the wavelet technology and offers better compression ratios, and evaluate the compression ratios of JPEG2000 for satellite image by performing various image quality tests. Also, we will compare brief test result using the commercial remote sensing software.

  • PDF

A Study on the Backcalculation of Layer Moduli of Asphalt Pavement System by Contemplating the Depth to Virtual Bedrock (가상암반층의 깊이를 고려한 아스팔트 포장체의 층별 탄성계수 추정기법의 개발)

  • Kim, Soo Il;Lee, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.87-99
    • /
    • 1993
  • The computer program, MFPD, which is used to backcalculate the layer moduli of asphalt concrete pavement system is modified by contemplating the depth to virtual bedrock in this study. An algorithm to estimate the depth to virtual bedrock is developed through the analysis of FWD impulse load duration and the compression wave velocity of ground. For verification of the modified MFPD, FWD is fabricated and then FWD field tests and verification tests are carried out at the test sites. Plate loading tests and surface wave propagation tests are performed at FWD test sites. Laboratory tests (Marshall stability tests, unconfined compression tests) for sampled asphalt concrete specimens are also carried out. From comparison analysis, the validity and applicability of the modified MFPD are verified.

  • PDF

Difference of Ground Reaction Force and Center of Pressure Parameters according to Levels of Education during Chest Compression Resuscitation (가슴압박소생술 시 교육수준에 따른 지면반력 및 압력중심의 차이)

  • Han, KiHoon;Gil, Ho-Jong;Lee, Mi-Kyoung;Park, Joonsung;Kim, Jongbin
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of levels of education on ground reaction force and center of pressure parameters during chest compression resuscitation. Method: Twenty male university students were divided into two groups; certified group (CG, n=10) and non-certified group (NCG, n=10). Two force plates were used to measure ground reaction force and center of pressure parameters during 30 times (three trials) chest compression resuscitation. Independent t-tests were used to compare ground reaction force and center of pressure parameters between two groups. An alpha level of 0.05 was used in all tests. Results: All chest-compression time parameters (total time, 1 systolic time, and diastolic time) in CG were significantly shorter than those in NCG (p<.05). Fy of the diastolic and Fz of the systolic in CG revealed significantly the larger GRF values and Fy of the systolic in CG showed significantly the smaller GRF value (p<.05). The standard deviation of Fz of the systolic and diastolic within the subject during 30 times chest-compression resuscitation revealed significantly the smaller values in CG (p<.05). Conclusion: First, CG performed chest compressions efficiently at an appropriate rate compared to NCG. Second, CG showed lower Fx and Fy values in both the mediolateral and anteroposterior axes compared to NCG, which reduced unnecessary chest-compression force consumption and minimized the movement in patients with cardiac arrest. Third, CG showed high Fz value of the systolic and low Fz value of the diastolic. Based on this, chest compression resuscitation was performed to increase the survival rate of cardiac arrest patients.

Study of Structural Stability and Seismic Performances of 4-Way Sway Prevention Brace (4방향흔들림방지버팀대의 구조 안정성 및 내진 성능 연구)

  • O, Soo Un;Lee, Hang Jun;Choa, Sung Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.646-659
    • /
    • 2022
  • Purpose: In this study, we developed a 4-way sway prevention brace that efficiently reduces the installation area and has excellent stability and seismic performance compared to the conventionl sway prevention brace used in existing firefighting facilities. The performance and reliability of the developed 4-way way prevention brace were analyzed by the tensile, compression tests and seismic tests. Method: As the static test, 4-way sway prevention braces were installed on the horizontal and vertical pipes to perform the tensile and compression tests based on the KFI certification standard and the maximum movement was measured at the rated load. As a dynamic test, 4-way sway prevention braces were installed in the pipes filled with water, and the test response spectrum to the input excitation wave were measured through the acceleration sensors. After the seismic tests, separation, failure, and local deformation of the pipes, and 4-way sway prevention braces were not observed. Result: The results of the tensile and compression tests indicated that the maximum movement of the pipe during tension and compression was 50% to 70% or less compared to the certification values, indicating that the performances of the 4-way sway prevention braces were very excellent. The results of the the seismic tests indicated that the test response spectrum of the 4-way sway prevention braces is within the required response spectrum. Conclusion: In this study, it was found that the 4-way sway prevention braces satisfied the KFI certification standard and were superior compared to the existing sway prevention brace in terms of the stability, cost, and installation area.

Compressive behavior of built-up open-section columns consisting of four cold-formed steel channels

  • Shaofeng, Nie;Cunqing, Zhao;Zhe, Liu;Yong, Han;Tianhua, Zhou;Hanheng, Wu
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.907-929
    • /
    • 2022
  • Compression experiments were conducted to investigate the compressive behavior of built-up open-section columns consisting of four cold-formed steel channels (BOCCFSs) of different lengths, thicknesses, and cross-section sizes (OB90 and OB140). The load-displacement curves, failure modes, and maximum compression strength values were analyzed in detail. The tests showed that the failure modes of the OB90 specimens transformed from a large deformation concentration induced by local buckling to flexural buckling with the increase in the slenderness ratio. The failure modes of all OB140 specimens were deformation concentration, except for one long specimen, whose failure mode was flexural buckling. When the slenderness ratios of the specimens were less than 55, the failure modes were controlled by local buckling. Finite element models were built using ABAQUS software and validated to further analyze the mechanical behavior of the BOCCFSs. A parametric study was conducted and used to explore a wide design space. The numerical analysis results showed that when the screw spacing was between 150 mm and 450 mm, the difference in the maximum compression strength values of the specimens was less than 4%. The applicability and effectiveness of the design methods in Chinese GB50018-2002 and AISI-S100-2016 for calculating the compression strength values of the BOCCFSs were evaluated. The prediction methods based on the assumptions produced predictions of the strength that were between 33% to 10% conservative as compared to the tests and the finite element analysis.

Estimation of Friction Angle of Rubble Mound by Centrifuge Model Tests (원심모형시험에 의한 사석재의 내부마찰각 추정)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, GiI-Soo;Lee, Jong-Ho
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.153-159
    • /
    • 2002
  • This paper is an experimental work of estimating friction angle of very coarse grained soil such as rubble mound by performing laboratory experiments. Two crushed rocks of rubble mound were used for tests. Triaxial compression tests with drained conditions were performed to measure friction angles of soils prepared by mixing the crushed soil having an identical coefficient of uniformity with different maximum grain size distribution. Centrifuge model experiments with those soils were also performed to measure angle of repose and to estimate friction angle of soil from measuring the slope of slip line in the active stress state. Model tests were carried out by changing the G-levels of 1G and 50G. From triaxial compression tests, the measured value of friction angle of soil is in the range of $41{\sim}57^{\circ}$. The measured value of repose angle is in the range of $32{\sim}35^{\circ}$. The values of friction angle are found not so sensitive to the maximum grain size of soil as long as the coefficient of uniformity is identical. Estimated value of friction angle from measuring the slope of slip line in the active stress state is in the range of $30{\sim}46^{\circ}$. Thus, the estimated angle of friction are found to be greater in the order of the measured angle of repose, the estimated value from the slope of active state, and triaxial compression test results. On the other hand, the measured values of friction angle from triaxial tests were compared with empirical equations, based on the relation between friction angle and void ratio. Equations proposed by Helenelund(l966) and Hansen(1967) found to be relatively reliable to estimate friction angles of soil.

  • PDF

Analysis of Compression Ignition Combustion in a Schnurle-Type Gasoline Engine - Comparison of performance between direct injection and port injection systems -

  • Kim, Seok-Woo;Moriyoshi, Yasuo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1451-1460
    • /
    • 2004
  • A two-stroke Schnurle-type gasoline engine was modified to enable compression-ignition in both the port fuel injection and the in-cylinder direct injection. Using the engine, examinations of compression-ignition operation and engine performance tests were carried out. The amount of the residual gas and the in-cylinder mixture conditions were controlled by varying the valve angle rate of the exhaust valve (VAR) and the injection timing for direct injection conditions. It was found that the direct injection system is superior to the port injection system in terms of exhaust gas emissions and thermal efficiency, and that almost the same operational region of compression-ignition at medium speeds and loads was attained. Some interesting combustion characteristics, such as a shorter combustion period in higher engine speed conditions, and factors for the onset of compression-ignition were also examined.

A Study on Material Characterization and Mechanical Properties of SMC Compression Molding Parts (SMC 압축성형재의 기계적 물성 및 특성에 관한 연구)

  • 김기택;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2396-2403
    • /
    • 1994
  • An experimental study on material characterization and mechanical properties of SMC(Sheet Molding Compounds) compression method parts was carried out. Simple compression test using grease oil as a lubricant was carried out to characterize flow stress of SMC at elevated temperatures. Two different mold temperatures, $130^{\circ}C{\;}and{\;}150^{\circ}C$ and two different mold speeds, 15, 45 mm/min were used for preparing the specimen of SMC compression molded parts. Surface roughness, tensile, and 3-point bending tests were used to determine the effects of molding temperatures and speeds on mechanical properties of compression molded SMC parts. Orientation and distribution of glass fiber in the compression molded SMC parts were also investigated by photographing the burnt flat specimen and taking SEM(Scanning Electron Microscope) of cross-sectional T-specimen.

Improvable Characteristics of Clay Layers with Time Lapse (시간경과에 따른 점토 지반의 개량 특성)

  • 이준대
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • Constructions on the soft clay layer of low strength and high compression bring out many problems. Recent studies show that strength of the soft clay layer could be substantially improved by mixing quicklime. For the purpose, a series of uniaxial compression tests were performed, using quicklime, in order to analyze strength characteristics. The major test results are summarized following : When water content is 90%, the strength is observed to precipitously increase between 3~14 days, then, the extent slowly increase in relative terms. When water content is 130%, the strength is observed to precipitously increase up to 28 days. When the strength of water content 90% is compared to that of water content 130%, the initial strength of the former is higher than that of the latter. The analyses show that the improvement of soft clay layers can be realized by the mixture of both quicklime and sand, and by the mixture of quicklime only.

  • PDF