• Title/Summary/Keyword: Compression Fracture

Search Result 589, Processing Time 0.024 seconds

A Study on the Fracture Behavior of Quartz Glass(I) (석영 유리의 파괴 거동에 관한 연구(I))

  • Choi, Seong-Dae;Cheong, Seon-Hwan;Jeong, Young-Kwan;Kim, Gi-Man;Hong, Yong-Bae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • Quartz glass are used in semiconductor industries as the reaction furnace, wafer carrier and accessaries. During the process the quartz glass received compression by direct contact with other quartz glass ware and metal as the form of weight itself and vacuum pressure and fatigue by vibrations caused by process. Even as the other ceramic materials quartz glass have high compressive strength but often there happened crack and breakage of quartz glass resulted in a great damage in the process. In this paper investigation will be carried out on fracture behavior of quartz glass under local load to give guideline to prevent unintended fracture of quartz glass.

  • PDF

Determination of ductile fracture parameters by notched specimen test (노치시편을 이용한 연성파괴이론 상수 결정)

  • Kim, S.W.;Kwon, Y.C.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.254-257
    • /
    • 2006
  • In the last few years, ductile fracture criteria based on various hypotheses have been developed and utilized with FEM to predict forming failure. The accurate deformation analysis by the FEM and the decision of damage parameters are the most important factors in these approaches. In this paper, several conventional integral forms of fracture criteria were introduced and the test method to determine damage parameters by using notched specimen was suggested. Based on the results, damage parameters obtained under the different stress system (tensile and compression) are compared and analyzed.

  • PDF

Biomechanical Property Change of Vertebral body in Vertebroplasty (척추성형술 시술에서 요추의 생체역학적 특성 변화)

  • 이준형;전성재;채수원;이태수;서중근;박정율;김상돈;이관행
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1324-1327
    • /
    • 2003
  • The compressed fracture of spine caused by osteoporosis is one of the most frequent diseases in bone fracture. Recently the vertebroplasty has drawn much attention as a medical treatment for the compressed fracture of spine, which strengthens the vertebral body and corrects deformity, and relieves pain in patients by injecting bone cement. The finite element analysis is used to investigate the vertebroplasty quantitatively. Previous works with finite element analysis have drawbacks in their simplified models geometry of vertebral body and with material properties of bone. In this paper the exact geometry of vertebral body has been constructed from medical image data and the biomechanical property changes of vertebral body in vertebroplasty have been investigate by using three dimensional finite element analysis.

  • PDF

Analysis for Cokes Fracture Behavior using Discrete Element Method (이산요소법을 이용한 코크스 분화 거동 해석)

  • You, Soo-Hyun;Park, Junyoung
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • The strength of lumped cokes can be represented by some index numbers. Although some indexes are suggested, these indexes are not enough to enlighten fracture mechanism. To find essential mechanism, a computational way, discrete element method, is applied to the uniaxial compression test for cylindrical specimen. The cylindrical specimen is a kind of lumped particle mass with parallel bonding that will be broken when the normal stress and shear stress is over a critical value. It is revealed that the primary factors for cokes fracture are parallel spring constant, parallel bond strength, bonding radius and packing ratio the parallel bond strength and radius of the parallel combination the packing density. Especially, parallel spring constant is directly related with elastic constant and yield strength.

FE analysis of RC structures using DSC model with yield surfaces for tension and compression

  • Akhaveissy, A.H.;Desai, C.S.;Mostofinejad, D.;Vafai, A.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.123-148
    • /
    • 2013
  • The nonlinear finite element method with eight noded isoparametric quadrilateral element for concrete and two noded element for reinforcement is used for the prediction of the behavior of reinforcement concrete structures. The disturbed state concept (DSC) including the hierarchical single surface (HISS) plasticity model with associated flow rule with modifications is used to characterize the constitutive behavior of concrete both in compression and in tension which is named DSC/HISS-CT. The HISS model is applied to shows the plastic behavior of concrete, and DSC for microcracking, fracture and softening simulations of concrete. It should be noted that the DSC expresses the behavior of a material element as a mixture of two interacting components and can include both softening and stiffening, while the classical damage approach assumes that cracks (damage) induced in a material treated acts as a void, with no strength. The DSC/HISS-CT is a unified model with different mechanism, which expresses the observed behavior in terms of interacting behavior of components; thus the mechanism in the DSC is much different than that of the damage model, which is based on physical cracks which has no strength and interaction with the undamaged part. This is the first time the DSC/HISS-CT model, with the capacity to account for both compression and tension yields, is applied for concrete materials. The DSC model allows also for the characterization of non-associative behavior through the use of disturbance. Elastic perfectly plastic behavior is assumed for modeling of steel reinforcement. The DSC model is validated at two levels: (1) specimen and (2) practical boundary value problem. For the specimen level, the predictions are obtained by the integration of the incremental constitutive relations. The FE procedure with DSC/HISS-CT model is used to obtain predictions for practical boundary value problems. Based on the comparisons between DSC/HISS-CT predictions, test data and ANSYS software predictions, it is found that the model provides highly satisfactory predictions. The model allows computation of microcracking during deformation leading to the fracture and failure; in the model, the critical disturbance, Dc, identifies fracture and failure.

Ulnar Nerve Compression in Guyon's Canal by Ganglion Cyst

  • Kwak, Kyung-Woo;Kim, Min-Su;Chang, Chul-Hoon;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.2
    • /
    • pp.139-141
    • /
    • 2011
  • Compression of the ulnar nerve in Guyon's canal can result from repeated blunt trauma, fracture of the hamate's hook, and arterial thrombosis or aneurysm. In addition, conditions such as ganglia, rheumatoid arthritis and ulnar artery disease can rapidly compress the ulnar nerve in Guyon's canal. A ganglion cyst can acutely protrude or grow, which also might compress the ulnar nerve. So, clinicians should consider a ganglion cyst in Guyon's canal as a possible underlying cause of ulnar nerve compression in patients with a sudden decrease in hand strength. We believe that early decompression with removal of the ganglion is very important to promote complete recovery.

The Effect of Compression Molding with Inclined Force for Fiber - Reinforced Thermoplastics (섬유강화 플라스틱 복합판의 압축성형에 있어서 경사하중의 영향 (AL망의 적층소재의 유동에 의하여))

  • 김만수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.63-67
    • /
    • 1994
  • A main property for fiber reinforced thermoplastic composite material in compression molding is the flow of fibers. This flow is so effective a long direction of acting force that this study examined for the inclined angel of 30$^{\circ}$, 45$^{\circ}$ and 6$^{\circ}$. Below the near softing temperature of plastic, the fiber has been fractured at a point so that the fiber strength is smaller then the local hydrostatic stress in the mold. It has been found that the position of fracture is changing accrding to the incling angle. In case of the above softing temperature, the larger the inclined is, the farther the flow of fiber move. Also the plastic flow has been progresed with the cicular are type.

  • PDF

Relationship between the Progression of Kyphosis in Thoracolumbar Osteoporotic Vertebral Compression Fractures and Magnetic Resonance Imaging Findings (흉요추 골다공증성 압박 골절에서의 후만 변형의 진행과 자기공명영상 소견 사이의 관계)

  • Jun, Deuk Soo;Baik, Jong-Min;Kwon, Hyuk Min
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.4
    • /
    • pp.336-342
    • /
    • 2019
  • Purpose: To examine the relationship between the progression of a kyphotic deformity and the magnetic resonance imaging (MRI) findings in conservatively treated osteoporotic thoracolumbar compression fracture patients. Materials and Methods: This study categorized the patients who underwent conservative treatment among those patients who underwent treatment under the suspicion of a thoracolumbar compression fracture from January 2007 to March 2016. Among them, this retrospective study included eighty-nine patients with osteoporosis and osteopenia with a bone density of less than -2.0 and single vertebral body fracture. This study examined the MRI of anterior longitudinal ligament or posterior longitudinal ligament injury, superior or inferior endplate disruption, superior of inferior intravertebral disc injury, the presence of low signal intensity on T2-weighted images, and bone edema of intravertebral bodies in fractured intravertebral bodies. Results: In cases where the superior endplate was disrupted or the level of bone edema of the intravertebral bodies was high, the kyphotic angle, wedge angle, and anterior vertebral compression showed remarkably progression. In the case of damage to the anterior longitudinal ligament or the superior disc, only the kyphotic angle was markedly prominent. On the T2-weighted images, low signal intensity lesions showed a high wedge angle and high anterior vertebral compression. On the other hand, there were no significant correlations among the posterior longitudinal ligament injury, inferior endplate disruption, inferior disc injury, and the progression of kyphotic deformity and vertebral compression. The risk factors that increase the kyphotic angle by more than 5° include the presence of injuries to the anterior longitudinal ligament, superior endplate disruption, and superior disc injury, and the risk factors were 21.3, 5.1, and 8.5 times higher than those of the uninjured case, and the risk differed according to the level of bone edema. Conclusion: An osteoporotic thoracolumbar compression fracture in osteoporotic or osteopenic patients, anterior longitudinal ligament injury, superior endplate and intravertebral disc injury, and high level of edema in the MRI were critical factors that increases the risk of kyphotic deformity.

Segmental Deformity Correction after Balloon Kyphoplasty in the Osteoporotic Vertebral Compression Fracture

  • Lee, Jung-Hoon;Kwon, Jeong-Taik;Kim, Young-Baeg;Suk, Jong-Sik
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • Objective : Balloon kyphoplasty can effectively relieve the symptomatic pain and correct the segmental deformity of osteoporotic vertebral compression fractures. While many articles have reported on the effectiveness of the procedure, there has not been any research on the factors affecting the deformity correction. Here, we evaluated both the relationship between postoperative pain relief and restoration of the vertebral height, and segmental kyphosis, as well as the various factors affecting segmental deformity correction after balloon kyphoplasty. Methods : Between January 2004 and December 2006, 137 patients (158 vertebral levels) underwent balloon kyphoplasty. We analyzed various factors such as the age and sex of the patient, preoperative compression ratio, kyphotic angle of compressed segment, injected PMMA volume, configuration of compression, preoperative bone mineral density (BMD) score, time interval between onset of symptom and the procedure, visual analogue scale (VAS) score for pain rating and surgery-related complications. Results : The mean postoperative VAS score improvement was $4.93{\pm}0.17$. The mean postoperative height restoration rate was $17.8{\pm}1.57%$ and the kyphotic angle reduction was $1.94{\pm}0.38^{\circ}$. However, there were no significant statistical correlations among VAS score improvement, height restoration rate, and kyphotic angle reduction. Among the various factors, the configuration of the compressed vertebral body (p=0.002) was related to the height restoration rate and the direction of the compression (p=0.006) was related with the kyphotic angle reduction. The preoperative compression ratio (p=0.023, p=0.006) and injected PMMA volume (p<0.001, p=0.035) affected both the height restoration and kyphotic angle reduction. Only the preoperative compression ratio was found to be as an independent affecting factor (95% CI : 1.064-5.068). Conclusion : The two major benefits of balloon kyphoplasty are immediate pain relief and local deformity correction, but segmental deformity correction achieved by balloon kyphoplasty does not result in additional pain relief. Among the factors that were shown to affect the segmental deformity correction, configuration of the compressed vertebral body, direction of the most compressed area, and preoperative compression ratio were not modifiable. However, careful preoperative consideration about the modifiable factor, the PMMA volume to inject, may contribute to the dynamic correction of the segmental deformity.

A study of fracture loads and fracture characteristics of teeth

  • Sheen, Chang-Yong;Dong, Jin-Keun;Brantley, William Arthur;Han, David Seungho
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.187-192
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to investigate the fracture loads and modes of failure for the full range of natural teeth under simulated occlusal loading. MATERIALS AND METHODS. One hundred and forty natural teeth were taken from mandibles and maxillas of patients. There were 14 groups of teeth with 10 teeth in each group (5 males and 5 females). Each specimen was embedded in resin and mounted on a positioning jig, with the long axis of the tooth at an inclined angle of 30 degrees. A universal testing machine was used to measure the compression load at which fracture of the tooth specimen occurred; loads were applied on the incisal edge and/or functional cusp. RESULTS. The mean fracture load for the mandibular first premolar was the highest (2002 N) of all the types of teeth, while the mean fracture load for the maxillary first premolar was the lowest (525 N). Mean fracture loads for the mandibular and maxillary incisors, and the first and second maxillary premolars, had significantly lower values compared to the other types of teeth. The mean fracture load for the teeth from males was significantly greater than that for the teeth from females. There was an inverse relationship between age and mean fracture load, in which older teeth had lower fracture loads compared to younger teeth. CONCLUSION. The mean fracture loads for natural teeth were significantly different, with dependence on tooth position and the sex and age of the individual.