• Title/Summary/Keyword: Compression Coding

Search Result 827, Processing Time 0.024 seconds

A Study on fast LIFS Image Coding Using Adaptive Orthogonal Transformation (적응 직교변환을 이용한 LIFS 부호화의 고속화에 관한 연구)

  • 유현배;박경남;박지환
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.5
    • /
    • pp.658-667
    • /
    • 2004
  • For digital image compression, various fractal image coding schemes using the self-similarity of image have been studied extensively. This paper discusses the problem that occurs during the calculating process of adaptive orthogonal transformation and provides improvements of LIFS coding scheme using the transformation. This proposed scheme has a better performance than JPEG for a wide range of compression ratio. This research also proposes an image composition method consisting of all domains of the transformation. The results show that the arithmetic operation processes of the encoder and the decoder become much smaller even without the distortion of the coding performance.

  • PDF

Performance Analysis of Super-Resolution based Video Coding for HEVC (HEVC 기반 초해상화를 이용한 비디오 부호화 효율 성능 분석)

  • Ki, Sehwan;Kim, Dae-Eun;Jun, Ki Nam;Baek, Seung Ho;Choi, Jeung Won;Kim, Dong Hyun;Kim, Munchurl
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.306-314
    • /
    • 2019
  • Since the resolutions of videos increase rapidly, there are continuing needs for effective video compression methods despite an increase in the transmission bandwidth. In order to satisfy such a demand, a reconstructive video coding (RVC) method by using a super resolution has been proposed. Since RVC reduces the resolution of the input video, when frames are compressed to the same size, the number of bits per pixel increases, thereby reducing coding artifacts caused by video coding. However, RVC method using super resolution is not effective in all target bitrates. Comparing the size of the loss generated while downsizing the resolution and the size of the loss caused by the video compression, only when the size of loss generated in the video compression is larger, RVC method can perform the improved compression performance compared to direct video coding. In particular, since HEVC has considerably higher compression performance than the previous standard video codec, it can be experimentally confirmed that the compression distortions become larger than the distortions of downsizing the resolution only in the very low-bitrate conditions. In this paper, we applied RVC based HEVC in various video types and measured the target bitrates that RVC method can be effectively applied.

A New Coding Technique for Scalable Video Service of Digital Hologram (디지털 홀로그램의 적응적 비디오 서비스를 위한 코딩 기법)

  • Seo, Young-Ho;Bea, Yoon-Jin;Lee, Yoon-Hyuk;Choi, Hyun-Jun;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.92-103
    • /
    • 2012
  • In this paper, we discuss and propose a new algorithm of coding technique for scalably servicing holographic video in various decoding environment. The proposed algorithm consists of the hologram-based resolution scalable coding (HRS) and the light source-based SNR scalable coding (LSS). They are classified by the method generating and capturing hologram. HRS is a scalable coding technique for the optically captured hologram and LSS is one for the light source before generating hologram. HRS can provide the scalable service of 8 steps with the compression ratio from 1:1 to 100:1 for a $1,024{\times}1,024$ hologram. LSS can also provide the various service depending on the number of the light source division using lossless compression. The proposed techniques showed the scalable holographic video service according to the display with the various resolutions, computational power of the receiving equipment, and the network bandwidth.

High-Speed Intra Prediction VLSI Implementation for HEVC (HEVC 용 고속 인트라 예측 VLSI 구현)

  • Jo, Hyeonsu;Hong, Youpyo;Jang, Hanbeyoul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1502-1506
    • /
    • 2016
  • HEVC (High Efficiency Video Coding) is a recently proposed video compression standard that has a two times greater coding efficiency than previous video compression standards. The key factors of high compression performance and increasement of computational complexity are the various types of block partitions and modes of intra prediction in HEVC. This paper presents an intra prediction hardware architecture for HEVC utilizing pipelining and interleaving techniques to increase the efficiency and performance while reducing the requirement for hardware resources.

S-Octree: An Extension to Spherical Coordinates

  • Park, Tae-Jung;Lee, Sung-Ho;Kim, Chang-Hun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1748-1759
    • /
    • 2010
  • We extend the octree subdivision process from Cartesian coordinates to spherical coordinates to develop more efficient space-partitioning structure for surface models. As an application of the proposed structure, we apply the octree subdivision in spherical coordinates ("S-Octree") to geometry compression in progressive mesh coding. Most previous researches on geometry-driven progressive mesh compression are devoted to improve predictability of geometry information. Unlike this, we focus on the efficient information storage for the space-partitioning structure. By eliminating void space at initial stage and aligning the R axis for the important components in geometry information, the S-Octree improves the efficiency in geometry information coding. Several meshes are tested in the progressive mesh coding based on the S-Octree and the results for performance parameters are presented.

WARPED DISCRETE COSINE TRANSFORM EXTENSION TO THE H.264/AVC

  • Lee, Sang-Heon;Cho, Nam-Ik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.326-329
    • /
    • 2009
  • This paper proposes a new video compression algorithm using an adaptive transform that is adjusted depending on the frequency contents of the input signals. The adaptive transform is based on the warped discrete cosine transform (WDCT) which is shown to provide better performance than the DCT at high bit rates, when applied to JPEG compression scheme [1, 2, 3]. The WDCT is applied to the video compression in this paper, as a new feature in the H.264/AVC. The proposed method shows the coding gain over the H.264/AVC at high bit rates. The coding gain is shown over the 35dB PSNR quality, and the gain increases as the bit rate increases. (about 1.0dB at 45dB PSNR quality at maximum)

  • PDF

Analysis of Affine Motion Compensation for Light Field Image Compression (라이트필드 영상 압축을 위한 Affine 움직임 보상 분석)

  • Huu, Thuc Nguyen;Duong, Vinh Van;Xu, Motong;Jeon, Byeungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.216-217
    • /
    • 2019
  • Light Field (LF) image can be understood as a set of images captured by a multi-view camera array at the same time. The changes among views can be modeled by a general motion model such as affine motion model. In this paper, we study the impact of affine coding tool of Versatile Video Coding (VVC) on LF image compression. Our experimental results show a small contribution by affine coding tool in overall LF image compression of roughly 0.2% - 0.4%.

  • PDF

Digital Hologram Compression Technique By Hybrid Video Coding (하이브리드 비디오 코팅에 의한 디지털 홀로그램 압축기술)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kang, Hoon-Jong;Lee, Seung-Hyun;Kim, Dong-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.29-40
    • /
    • 2005
  • According as base of digital hologram has been magnified, discussion of compression technology is expected as a international standard which defines the compression technique of 3D image and video has been progressed in form of 3DAV which is a part of MPEG. As we can identify in case of 3DAV, the coding technique has high possibility to be formed into the hybrid type which is a merged, refined, or mixid with the various previous technique. Therefore, we wish to present the relationship between various image/video coding techniques and digital hologram In this paper, we propose an efficient coding method of digital hologram using standard compression tools for video and image. At first, we convert fringe patterns into video data using a principle of CGH(Computer Generated Hologram), and then encode it. In this research, we propose a compression algorithm is made up of various method such as pre-processing for transform, local segmentation with global information of object image, frequency transform for coding, scanning to make fringe to video stream, classification of coefficients, and hybrid video coding. Finally the proposed hybrid compression algorithm is all of these methods. The tool for still image coding is JPEG2000, and the toots for video coding include various international compression algorithm such as MPEG-2, MPEG-4, and H.264 and various lossless compression algorithm. The proposed algorithm illustrated that it have better properties for reconstruction than the previous researches on far greater compression rate above from four times to eight times as much. Therefore we expect that the proposed technique for digital hologram coding is to be a good preceding research.

Lossless Compression Algorithm using Spatial and Temporal Information (시간과 공간정보를 이용한 무손실 압축 알고리즘)

  • Kim, Young Ro;Chung, Ji Yung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.3
    • /
    • pp.141-145
    • /
    • 2009
  • In this paper, we propose an efficient lossless compression algorithm using spatial and temporal information. The proposed method obtains higher lossless compression of images than other lossless compression techniques. It is divided into two parts, a motion adaptation based predictor part and a residual error coding part. The proposed nonlinear predictor can reduce prediction error by learning from its past prediction errors. The predictor decides the proper selection of the spatial and temporal prediction values according to each past prediction error. The reduced error is coded by existing context coding method. Experimental results show that the proposed algorithm has better performance than those of existing context modeling methods.

Near Lossless Medical Image Compression using Wavelet Transform (웨이블릿변환을 이용한 무손실에 가까운 의료영상압축)

  • Yoon, Ki-Byung;Ahn, Chang-Beom
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.11
    • /
    • pp.113-116
    • /
    • 1995
  • Medical image compression using the wavelet transform has been tried. Due to the flexibility in representing nonstationary image signal in both time and frequency domains and its ability to adapt human visual characteristics, wavelet transform has unique advantage in images compression. In the proposed wavelet compression original image is decomposed into multi-scale bands. Different scale factors are employed in the quantization of wavelet decomposed images in different bands. For the lowest band, a predictor is designed and error signal is entropy coded. For high scale bands, runlength coding for toro run is used with Huffman coding. From simulation with magnetic resonance images($256\times256$ size, 256 graylevels) the proposed algorithm is superior to the JPEG by more than 2.5 dB in near lossless compression (CR = 8 - 10).

  • PDF