• Title/Summary/Keyword: Compressible soil

Search Result 49, Processing Time 0.025 seconds

Effect of the Settlement Reduction to each Geosynthetic Reinforced Pile Supported Embankments Design Condition (토목섬유보강 성토지지말뚝의 설계조건별 침하억제 효과)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Moon, In-Ho
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1519-1524
    • /
    • 2009
  • Construction of high-speed concrete track embankments over soft ground needs many of the ground improvement techniques. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, another measures should be considered. Especially, since the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this allowable settlement by using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. In this paper, three cases with different embankment height and number of geosynthetic reinforcement, were studied through FEM analysis for efficient use of pile net method.

  • PDF

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction (유체-구조물-지반 상호작용을 고려한 해상풍력발전기의 지진응답해석)

  • Lee, Jin-Ho;Lee, Sang-Bong;Kim, Jae-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, an analysis method for the earthquake response of an offshore wind turbine model is developed, considering the effects of the fluid-structure-soil interaction. The turbine is modeled as a tower with a lumped mass at the top of it. The tower is idealized as a tubular cantilever founded on flexible seabed. Substructure and Rayleigh-Ritz methods are used to derive the governing equation of a coupled structure-fluid-soil system incorporating interactions between the tower and sea water and between the foundation and the flexible seabed. The sea water is assumed to be a compressible but non-viscous ideal fluid. The impedance functions of a rigid footing in water-saturated soil strata are obtained from the Thin-Layer Method (TLM) and combined with the superstructure model. The developed method is applied to the earthquake response analysis of an offshore wind turbine model. The method is verified by comparing the results with reference solutions. The effects of several factors, such as the flexibility of the tower, the depth of the sea water, and the stiffness of the soil, are examined and discussed. The relative significance of the fluid-structure interaction over the soil-structure interaction is evaluated and vice versa.

Characteristics of Unconfined Compressive Strength of Dredged Clay Mixed with Friendly Soil Hardening Agent (준설토와 친토양 경화재 혼합지반의 일축강도특성)

  • Oh, Sewook;Yeon, Yonghum;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.73-81
    • /
    • 2016
  • In the construction on low strength and high compressible soft ground, the many problems have been occurred in recent construction project. therefore, the soil improvement have been developed to obtain high strength in relatively short period of curing time. Based on the laboratory tests using undisturbed marine clay, the effect of improvement on soft ground was estimated. Deep mixing method by cement have been virtually used for decades to improve the mechanical properties of soft ground. However, previous researches set the focus on the short term strength the about 10% of cement treated clay. In this paper, cement and Natural Soil Stabilizer (NSS) were used as the stabilizing agent to obtain trafficability and mechanical strength of the soft clay. Based on the several laboratory tests, optimum condition was proposed to ensure the mechanical strength and compressibility as the foundation soil using cement and NSS mixed soil. Finally, research data was proposed about the applicability of NSS as the stabilizing agent to soft clay to increase the mechanical strength of soil.

Shear Strength Characteristics of Artificial Soil Mixture with Pond Ash (매립석탄회가 혼합된 인공혼합토의 전단특성)

  • Kim, Kyoungo;Park, Seongwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.39-47
    • /
    • 2013
  • Recently, there have been various domestic construction activities related to the reclamation of the dredged soils to expand the land use. However, the reclaimed grounds made of the dredged soils cause various problems due to highly compressible and low shear strength nature. Particularly, this nature induces huge problems in case of the harbor facilities and road construction on the reclaimed sites. Furthermore, in the reclamation activities, the marine dredged soils are often used instead of the well sorted sand, which induces problems of compressibilities. Therefore, in this study, the mechanical characteristics of artificial soil mixture of kaolinite representing the marine dredged soils and the pond ash. A large consolidometer is designed and manufactured to produce the artificial soil mixture. To represent various mixing ratio between the fly ash and bottom ash in the pond ash, six samples with the same stress history are made with different mixing ratio among kaolinite, bottom ash and fly ash. Isotropically consolidated and undrained compression tests are performed to investigate the shear characteristics of soil mixtures. Based on the experimental results, as the components of mixed ash increase, the friction angle increase and the cohesion values decrease. Also, the porepressure parameters at failure, Af increase with the mixing components of the pond ash. The portion of bottom ash has more impact on the shear behavior than that of fly ash.

A Numerical Study on Granular Compaction Pile Method Reinforcing by Using Lean-Mixed Concrete (빈배합 콘크리트로 보강된 조립토 다짐말뚝공법에 관한 기초연구)

  • Kim, Seung-Wook;Kim, Hong-Taek;Kim, Jeong-Ho;Baek, Seung-Cheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.5-18
    • /
    • 2006
  • Stone column or granular compaction pile have been used in widely during the several decades as a technique to reinforce soft cohesive soils and increase bearing capacity, accelerate consolidation settlement of the foundation soil. The bearing capacity of the granular compaction pile is governed mainly by the lateral confining pressure mobilized in the native soft soil to restrain bulging collapse of the granular pile. Therefore, the technique becomes unfeasible in soft, compressible clayey soils that do not provide sufficient lateral confinement. This paper presents the main results of numerical study of granular compaction pile which is partly mixed with lean concrete. 3D finite element analyses are performed with composite reinforced foundations by both granular compaction pile and partly mixed granular compaction pile with lean-mixed concrete. Finally, a regression formula for calculating settlement reduction coefficients is proposed in this study by using numerical analysis results and applicability of the proposed method is identified by a series of parametric study about settlement reduction coefficients.

  • PDF

A Study on the Settlement Restraint of the Granular Compaction Pile (조립토 다짐말뚝의 침하저감방안에 관한 연구)

  • Kim, Seung-Wook;Lee, Duck-Won;Kim, Seo-Ryong;Ann, Jai-Gyoo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.336-342
    • /
    • 2005
  • Stone column or granular compaction pile have been used in widely during the several decades as a technique to reinforce soft cohesive soils and increase bearing capacity, accelerate consolidation settlement of the foundation soil. The bearing capacity of the granular compaction pile is governed mainly by the lateral confining pressure mobilized in the native soft soil to restrain bulging collapse of the granular pile. Therefore, the technique becomes unfeasible in soft, compressible clayey soils that do not provide sufficient lateral confinement. This paper presents the main results of numerical study of granular compaction pile which is partly mixed with lean concrete. 3D finite element analyses are performed with composite reinforced foundations by both granular compaction pile and partly mixed granular compaction pile with lean-mixed concrete.

  • PDF

Compressibility behaviour of peat reinforced with precast stabilized peat columns and FEM analysis

  • Kalantari, Behzad;Rezazade, Reza K.
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.415-426
    • /
    • 2015
  • Researches have been done to discover ways to strengthen peat soil deposits. In this model study, fibrous peat that is the most compressible types of peat has been reinforced with precast peat columns stabilized with ordinary Portland cement and polypropylene fibres. Rowe cell consolidation tests as well as plate load tests (PLTs) were conducted on various types of test samples to evaluate the strength and deformation of untreated peat and peat reinforced by various types of columns. PLTs were conducted in a specially designed and fabricated circular steel test tank. The compression index ($C_c$) and recompression index ($C_r$) of fibrous peat samples reduced considerably upon use of precast columns. Also, PLT results confirmed the results obtained from Rowe cell tests. Use of polypropylene fibres added to cement further decreased ($C_c$) and ($C_r$) and increased load bearing capacity of untreated peat. Finite element method (FEM) using Plaxis 3D was carried out to evaluate the stress distributions along various types of tested samples and also, to compare the deformations obtained from FEM analysis with the actual maximum deformations found from PLTs. FEM results indicate that most of the induced stresses are taken on the upper portion of tested samples and reach their maximum values below the loading plate. Also, a close agreement was found between actual deformation values obtained from PLTs and values resulted from FEM analysis for various types of tested samples.

A Study on Hardening Zone by Vacuum Consolidation Drainage Method (진공압밀 배수공법에 의한 Hardening Zone에 대한 연구)

  • Chung, Youn-In;Kim, Hee-Joong;Chang, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • The relationships were studied between the range of hardening zone and the intensity of vacuum pressure in case of applying vacuum consolidation drainage method for soil improvement. A testing apparatus was made to measure the range of hardening zone varying the water content and the intensity of vacuum pressure for 3 different the highly compressible dredged clays(Gwangyang, Busan and Mokpo). In case of applying high vacuum pressure, the hardening zone is not spreaded as compared to low vacuum pressure because of the clogging of drainage and developed hardening zone near the drainage.