• 제목/요약/키워드: Compressible

검색결과 1,150건 처리시간 0.059초

초고압 가스차단기 내부의 압축성 유동장 해석 (Analysis of Compressible Flow Fields in a High Voltage Gas Circuit Breaker)

  • 이종철;오일성;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.305-310
    • /
    • 2001
  • This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker. There are many difficult problems in analyzing the gas flow in GCB due to complex geometry, moving boundary, shock wave and so on. In particular, the distortion problem of the grid due to the movement of moving parts can be worked out by the fixed grid technique. Numerical simulations are based on a fully implicit finite volume method of the compressible Reynolds-averaged Navier-Stokes equations to obtain the pressure, density, and velocity through the entire interruption process. The presented method is applied to the real circuit breaker model and the pressure in front of the piston is good agreement with the experimental one.

  • PDF

이중 시간전진법과 Preconditioning을 이용한 저속의 압축성유동에 대한 비정상 해석기법 (Time accurate method for low speed compressible flows using dual time stepping and preconditioning procedure)

  • 최윤호;강신형
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.788-802
    • /
    • 1998
  • A numerical method using dual time stepping and preconditioning procedure for efficient computations of unsteady low speed compressible flow problems is developed. The time-derivative preconditioning method which is valid at low speed flow conditions cannot maintain temporal accuracy because of the modification of the time-derivative term in Navier-Stokes equations. The dual time stepping procedure is incorporated to enable the time accurate computations and this procedure introduces a pseudo-time derivative in addition to the physical time derivative. At a given physical time, an inner iteration can be carried out until a steady state in pseudo-time is achieved. This will effectively yield a time accurate solution. Computational capabilities of the above algorithm are demonstrated through computation of a variety of practical fluid flows and it is shown that the algorithms is efficient in the essentially incompressible flows and low Mach number compressible flows with heat source.

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

사출성형에서의 Penalty Formulation을 이용한 Packing 과정 해석 (Analysis of Packing Procedure Using Penalty Formulation in Injection Molding)

  • 강성용;김승모;김선경;이우일;김대환;김우규;김형채
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.916-921
    • /
    • 2004
  • The penalty method has been widely applied to analyses of incompressible fluid flow. However, we have not yet found any prior studies that employed penalty method to analyze compressible fluid flow. In this study, with an eye on the apparent similarity between the slight compressible formulation and the penalty formulation, we have proposed a new approximate approach that can analyze compressible packing process using the penalty parameter l. Based on the assumption of the isothermal flow, a set of reference solutions was obtained to verify the validity of the proposed scheme. Furthermore, we have applied the proposed scheme to the analysis of the packing process of different cases.

  • PDF

압축성 유동 해석 프로그램 개발을 통한 Eckardt 임펠러의 성능 예측 (Performance Prediction of Eckardt's Impeller based on The Development of compressible Navier-Stokes Solver)

  • 곽승철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.223-232
    • /
    • 1998
  • To investigate the flow inside the centrifugal impeller, computer program which can solve Three-dimensional compressible turbulent flow has been developed. The Navier-Stokes equations were chosen as the governing equation for viscous flow while Euler equations for inviscid case. Time marching method was incorporated with the Flux Difference Splitting method suggested by Roe to capture the steep gradients such as a shock. For high order of accuracy, MUSCL approach was adopted while differentiable limiter to ensure TVD property. For turbulence closure, Baldwin- Lomax model was applied due to its simplicity. To demonstrate the capabilities of present program, several validation problems have been solved and compared with experiments and other available data. From the above calculations generally good agreements were obtained. Finally, the developed code was applied to Eckardt's impeller and the performance prediction was carried out. Some important aspects on boundary condition for successful simulation were discussed and the remedy was also introduced.

  • PDF

Numerical Study of Three-Dimensional Compressible Flow Structure Within an S-Duct for Aircraft Engine Inlet

  • Cho, Soo-Yong;Park, Byung-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제1권1호
    • /
    • pp.36-47
    • /
    • 2000
  • Three-dimensional compressible turbulent flow fields within the passage of a diffusing S-duct have been simulated by solving the Navier-Stokes equations with SIMPLE scheme. The average inlet Mach number is 0.6 and the Reynolds number based on the inlet diameter is $1.76{\times}10^6$ The extended $k-{\varepsilon}$ turbulence model is applied to modeling the Reynolds stresses. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with experimental wall static-pressure, total-pressure fields, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and streamlines in the symmetric plane are presented. The computed results depict the interaction between the low energy flow by the flow separation and the high energy flow by the reversed duct curvature. The computed results obtained using the extended $k-{\varepsilon}$ turbulence model.

  • PDF

REGULARITY OF WEAK SOLUTIONS OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Choe, Hi-Jun;Jin, Bum-Ja
    • 대한수학회지
    • /
    • 제40권6호
    • /
    • pp.1031-1050
    • /
    • 2003
  • In this paper, we assume a density with integrability on the space $L^{\infty}$(0, T; $L^{q_{0}}$) for some $q_{0}$ and T > 0. Under the assumption on the density, we obtain a regularity result for the weak solutions to the compressible Navier-Stokes equations. That is, the supremum of the density is finite and the infimum of the density is positive in the domain $T^3$ ${\times}$ (0, T). Moreover, Moser type iteration scheme is developed for $L^{\infty}$ norm estimate for the velocity.

버터플라이 밸브를 통과하는 압축성 유동에 대한 실험 및 수치해석적 연구 (A STUDY ON EXPERIMENTAL AND NUMERICAL ANALYSIS ON THE COMPRESSIBLE FLOW INTO A BUTTERFLY VALVE)

  • 황규식;장문석;홍진표;허형석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.181-186
    • /
    • 2007
  • Compressible flow characteristics in a butterfly valve is studied experimentally and numerically. The disk angle of the valve is changed as $0^{\circ}{\sim}30^{\circ}$. The SST model is used to represent the turbulent effect in the commercial code, CFX11. It was found that the numerical results are similar to the experimental ones, general discussions are given to the pressure distributions upon the disk angle of the valve.

  • PDF

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF

압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법 (EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS)

  • 염금수;장근식
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.