• Title/Summary/Keyword: Compressed hydrogen

Search Result 79, Processing Time 0.026 seconds

A Theoretical Study on the Compressibility Factor of Hydrogen Gas in the High Pressure Tank (고압탱크에서 수소가스의 압축성 인자에 관한 이론적 연구)

  • JI-QIANG LI;HENG XU;JI-CHAO LI;JEONG-TAE KWON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.162-168
    • /
    • 2023
  • The fast refueling process of compressed hydrogen has an important impact on the filling efficiency and safety. With the development and use of hydrogen energy, the demand for precision measurement of filling hydrogen thermodynamic parameters is also increasing. In this paper, the compressibility factor calculation model of high-pressure hydrogen gas was studied, and the basic equation of state and thermo-physical parameters were calculated. The hydrogen density data provided by the National Institute of Standards and Technology was compared with the calculation results of each model. Results show that at a pressure of 0.1-100 MPa and a temperature of 233-363 K, the calculation accuracy of the Zheng-Li equation of state was less than 0.5%. In the range of 0.1-70 MPa, the accuracy of Redich-Kwong equation is less than 3%. The hydrogen pressure more influences on the compressibility factor than the hydrogen temperature does. Using the Zheng-Li equation of state to calculate the compressibility factor of on-board high pressure hydrogen can obtain high accuracy.

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

A Study on Mitigating Accidents for Liquid Hydrogen (액체수소 사고피해 완화기술에 대한 연구)

  • Jo, Young-Do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.29-33
    • /
    • 2012
  • This paper is an attempt to give a concise overview of the state-of-the-art in the recent liquid hydrogen safety researches with unwanted event progress. The vessel of liquified hydrogen may fail and liquid hydrogen spilled. The hydrogen will immediately start to evaporate above a pool and make a hydrogen cloud. The cloud will disperse and can produce a vapor cloud explosion. The vessel containing the liquid hydrogen may not be able to cope with the boil-off due to heat influx, especially in case of a fire, and a BLEVE may occur. In equipment where it exists as compressed gas, a leak generates a jet of gas that can self-ignite immediately or after a short delay and produce a jet flame, or in case it ignites at a source a certain distance from the leak (delayed ignition), a flash fire occurs in the open and with confinement a deflagration or even detonation may develop. The up-to-date knowledge in these events, recent progress and future research are discussed in brief.

Formation and Hydrogen Absorption Properties of Intermetallic Mg-Ni Compound Nanoparticles (Mg-Ni 금속 간 화합물 나노입자의 형성과 수소저장 특성)

  • BAE, YOOGEUN;HWANG, CHULMIN;KIM, JONGSOO;DONG, XING LONG;KIM, SEWOONG;JUNG, YOUNGUAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.3
    • /
    • pp.238-245
    • /
    • 2017
  • Mg-Ni nanoparticles were synthesized by a physical vapor condensation method (DC arc-discharge) in a mixture of argon and hydrogen atmosphere, using compressed mixture of micro powders as the raw materials. The crystal phases, morphology, and microstructures of nanoparticles were analyzed by means of X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found that the intermetallic compounds of $Mg_2Ni$ and $Mg_2Ni$ formed with existence of phases of Mg, Ni, and MgO in Mg-Ni nanoparticles. After one cycle of hydrogen absorption/desorption process (activation treatment), Mg-Ni nanoparticles exhibited excellent hydrogen absorption properties. $Mg_2Ni$ phase became the main phase by aphase transformation during the hydrogen treatments. The phenomenon of refinement of grain size in the nanoparticle was also observed after the hydrogen absorption/desorption processes, which was attributed to the effect of volume expansion/shrinkage and subsequent break of nanoparticles. Maximum hydrogen absorption contents are 1.75, 2.21 and 2.77 wt.% at 523, 573 and 623 K, respectively.

Heat transfer performance of a helical heat exchanger depending on coil distance and flow guide for supercritical cryo-compressed hydrogen

  • Cha, Hojun;Choi, Youngjun;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.62-67
    • /
    • 2022
  • Liquid hydrogen (LH2) has a higher density than gaseous hydrogen, so it has high transport efficiency and can be stored at relatively low pressure. In order to use efficient bulk hydrogen in the industry, research for the LH2 supply system is needed. In the high-pressure hydrogen station based on LH2 currently being developed in Korea, a heat exchanger is used to heat up supercritical hydrogen at 700 bar and 60 K, which is pressurized by a cryogenic high-pressure pump, to gas hydrogen at 700 bar and 300 K. Accordingly, the heat exchanger used in the hydrogen station should consider the design of high-pressure tubes, miniaturization, and freezing prevention. A helical heat exchanger generates secondary flow due to the curvature characteristics of a curved tube and can be miniaturized compared to a straight one on the same heat transfer length. This paper evaluates the heat transfer performance through parametric study on the distance between coils, guide effect, and anti-icing design of helical heat exchanger. The helical heat exchanger has better heat transfer performance than the straight tube exchanger due to the influence of the secondary flow. When the distance between the coils is uniform, the heat transfer is enhanced. The guide between coils increases the heat transfer performance by increasing the heat transfer length of the shell side fluid. The freezing is observed around the inlet of distribution tube wall, and to solve this problem, an anti-icing structure and a modified operating condition are suggested.

The Outlook of Future Aeropropulsion System (미래 항공기 추진기관의 전망)

  • Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.58-63
    • /
    • 2009
  • The global restriction on pollutant emissions and the soaring of crude oil price are expected to result in the change of future transportation system. Hydrogen is considered to be the leading candidate as an alternative energy source before other new alternative energy sources emerge. Scientists anticipate that hydrogen fuel gas turbine engine and fuel cell will be the power plant of the aircraft in the near future. To realize the aircraft powered by fuel cell system in the future, the technologies such as fuel cell with higher energy density, compressed gas or liquid storage system of hydrogen fuel, and efficient and lightweight electric motor have to be developed first.

Advanced Technologies for the Commercialization of Hydrogen Fuel Cell Electric Vehicle (수소연료전지자동차의 최신기술)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.132-145
    • /
    • 2014
  • There is a general agreement that performance of hydrogen fuel cell vehicle(FCV) with respect to cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015_2020 will satisfy customer expectations. However cost, durability and the lack of refueling infrastructure remain significant barriers. Cost have been dramatically reduced and durability has been enhanced over the past decade, yet are still about twice what appears to be needed sustainable market success. Advanced Technologies for the commercialization of hydrogen FCV were reviewed.

Numerical Analysis of Electromagnetic Characteristic of High Voltage/Current Cable for Fuel Cell Electric Vehicle (FCEV) (수소 연료전지 차량용 고전압 케이블의 전자파 특성 수치해석에 관한 연구)

  • Lee, Soon-Yong;Choi, Jae-Hoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2010
  • The electromagnetic characteristics of FCEVs (fuel cell electric vehicles) are much different from the existing combustion engine cars as well as hybrid, plug-in-hybrid, and pure electric vehicles due to the high voltage/current generated by a fuel cell stack which uses a compressed hydrogen gas reacted with oxygen. To operate fuel cell stack efficiently, BOP (Balance of Plant) is essential. BOP systems are used many not only for motors in water pump, air blower, and hydrogen recycling pump but also inverters for these motors. Since these systems or components are connected by high voltage cables, EMC (Electromagnetic compatibility) analysis for high voltage/current cable is the most important element to prevent the possible electric functional safety errors. In this paper, electromagnetic fields of high current/voltage cable for FCEVs is studied. From numerical analysis results, time harmonic magnetic field strength of high current/voltage cable have difference of 20~28 dB according to phase. EMI result considered ground effect of FECV at 10 m shows difference of 14.5 dB at 30 MHz and 2.8 dB at 230 MHz compared with general cable.

Influence of Filler Particle Size on Behaviour of EPDM Rubber for Fuel Cell Vehicle Application under High-Pressure Hydrogen Environment (수소전기차용 EPDM 고무의 충전재 입자 크기별 고압 수소 환경에서의 거동 연구)

  • KIM, KEEJUNG;JEON, HYEONG-RYEOL;KANG, YOUNG-IM;KIM, WANJIN;YEOM, JIWOONG;CHOI, SUNG-JOON;CHO, SUNGMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.453-458
    • /
    • 2020
  • In this study, ethylene-propylene-diene monomer (EPDM) rubbers reinforced with various particle size of carbon black were prepared and tested. We followed recently published CSA/ANSI CHMC2 standard "the test methods for evaluating material compatibility in compressed hydrogen applications-polyemr". Measurement of change in hardness, tensile strength and volume were performed after exposure to maximum operating pressure, 87.5 MPa, for 168 hours (1 week). Once EPDM was exposed to high-pressure hydrogen, the samples experience volume increase and degradation of the physical properties. Also, after the dissolved hydrogen was fully eliminated from the specimens, the hardness and the tensile properties were not recovered. The rubber reinforced with smaller sizes of carbon black particles showed less volume expansion and decrease of physical properties. As a result, smaller particle size of carbon black filler led to more resistance to high-pressure hydrogen.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.