• Title/Summary/Keyword: Compound Material

Search Result 1,139, Processing Time 0.039 seconds

Contents of Bioactive Constituents and Antioxidant Activities of Cultivated and Wild Raspberries (재배종 및 야생 산딸기의 기능성 성분 함량과 항산화 활성)

  • Lee, Heon Ho;Moon, Yong Sun;Yun, Hae Keun;Park, Pil Jae;Kwak, Eun Jung
    • Horticultural Science & Technology
    • /
    • v.32 no.1
    • /
    • pp.115-122
    • /
    • 2014
  • In order to select the raspberry cultivars that have high contents of bioactive constituents and high antioxidant activities, 7 cultivated and 2 wild raspberries which were selected and cultivated in the Bokbunja Institute were evaluated for their physicochemical characteristics, bioactive constituents, and antioxidant activities. The wild raspberry of Asan was the smallest among the sample raspberries but it had the highest sugar and lowest acid contents among the raspberries. Another wild raspberry of Ulleungdo had the highest total phenolic compound and ellagic acid contents, 182.97, $55.25mg{\cdot}100g^{-1}FW$, respectively, although it was small and had low sugar and high acid contents. Among the widely cultivated raspberry cultivars in Kimhae, 'Wangttal' cultivar was a big raspberry with 12.80% sugar content, and another unknown raspberry cultivar was as small as the wild raspberry with 14.60% sugar content. Although 'Wangttal' and the unknown raspberry cultivars cultivated in Kimhae possess lower contents of total phenolic compound (159.62, $165.94mg{\cdot}100g^{-1}$) and ellagic acid (45.7, $52.1mg{\cdot}100g^{-1}$ ) than the wild raspberry of Ulleungdo, the contents of total flavonoids (14.28, $14.90mg{\cdot}100g^{-1}$) and total anthocyanins (28.69, $30.48mg{\cdot}100g^{-1}$) were higher. Also the wild raspberry of Ulleungdo, 'Wangttal', and the unknown raspberry cultivar of Kimhae had higher antioxidant activities measured by FRAP (Ferric reducing antioxidant power), DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS (2,2' azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) assays. The present study shows that three raspberry cultivars could be potent resources for raspberry breeding and functional material development.

THE BOND CHARACTERISTICS OF PORCELAIN FUSED BY TITANIUM SURFACE MODIFICATION (타이타늄의 표면개질에 따른 도재 결합 특성)

  • Choi, Taek-Huw;Park, Sang-Won;Vang, Mong-Sook;Yang, Hong-So;Park, Ha-Ok;Lim, Hyun-Pil;Oh, Gye-Jeong;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Kyung-Ku
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.169-181
    • /
    • 2007
  • Statement of problem: Titanium is well known as a proper metal for the dental restorations, because it has an excellent biocompatibility, resistance to corrosion, and mechanical property. However, adhesion between titanium and dental porcelains is related to the diffusion of oxygen to the reaction layers formed on cast-titanium surfaces during porcelain firing and those oxidized layers make the adhesion difficult to be formed. Many studies using mechanical, chemical and physical methods to enhance the titanium-ceramic adhesion have been actively performed. Purpose: This study meant to comparatively analyse the adhesion characteristics depending on different titanium surface coatings after coating the casts and wrought titanium surfaces with Au and TiN. Material and method: In this study, the titanium specimens (CP-Ti, Grade 2, Kobe still Co. Japan) were categorized into cast and wrought titanium. The wrought titanium was cast by using the MgO-based investment(Selevest CB, Selec). The cast and wrought titanium were treated with Au coating($ParaOne^{(R)}$., Gold Ion Sputter, Model PS-1200) and TiN coating(ATEC system, Korea) and the ultra low fusing dental porcelain was fused and fired onto the samples. Biaxial flection test was done on the fired samples and the porcelain was separated. The adhesion characteristics of porcelain and titanium after firing and the specimen surfaces before and after the porcelain fracture test were observed with SEM. The atomic percent of Si on all sample surfaces was comparatively analysed by EDS. In addition, the constituents of specimen surface layers after the porcelain fracture and the formed compound were evaluated by X-ray diffraction diagnosis. Result: The results of this study were obtained as follows : 1. The surface characteristics of cast and wrought titanium after surface treatment(Au, TiN, $Al_2O_3$ sandblasting) were similar and each cast and wrought titanium showed similar bonding characteristics. 2. Before and after the biaxial flection test, the highest atomic weight change of Si component was found in $Al_2O_3$ sandblasted wrought titanium(28.6at.% $\rightarrow$ 8.3at.%). On the other hand, the least change was seen in Au-Pd-In alloy(24.5at.% $\rightarrow$ 9.1at.%). 3. Much amount of Si components was uniformly distributed in Au and TiN coated titanium, but less amount of Si's was unevenly dispersed on Al2O3 sandblasting surfaces. 4. In X-ray diffraction diagnosis after porcelain debonding, we could see $Au_2Ti$ compound and TiN coating layers on Au and TiN coated surfaces and $TiO_2$, typical oxide of titanium, on all titanium surfaces. 5. Debonding of porcelain on cast and wrought titanium surface after the biaxial flection is considered as a result of adhesion deterioration between coating layers and titanium surfaces. We found that there are both adhesive failure and cohesive failure at the same time. Conclusion: These results showed that the titanium-ceramic adhesion could be improved by coating cast and wrought titanium surfaces with Au and TiN when making porcelain fused to metal crowns. In order to use porcelain fused to titanium clinically, it is considered that coating technique to enhance the bonding strength between coating kKlayers and titanium surfaces should be developed first.

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

The Anti-Oxidant Effect of Extracts from the Vaccinium oldhami (정금나무(Vaccinium oldhami) 열매의 항산화 효과)

  • Chae, Jung-Woo;Kong, Hye-Jin;Lee, Mi-Ji;Park, Jung-Yeon;Kim, Ji-Hyang;Kim, Young-Hun;Lee, Chang-Eon;Kim, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1235-1240
    • /
    • 2010
  • Natural compounds have been studied to substitute synthetic antioxidants. In this study, the anti-oxidant activity of 70% acetone extracts from the Vaccinium oldhami fruit was investigated for utilization as ingredients for the cosmetic and bio-industries. Anti-oxidant activity was determined by determining total polyphenolic content, electron donating ability, nitric oxide (NO) radical scavenging activity, $ABTS{\cdot}^+$ cation radical scavenging activity and hydrogen peroxide scavenging activity. The polyphenolic content of 70% acetone extracts of the Vaccinium oldhami fruit was 55.972 mg TAE/g. In electron donating activity, 70% acetone extracts of the Vaccinium oldhami fruit showed an effect of 93.9%, which was similar to BHA effect at a concentration of 500 ${\mu}g/ml$. In the NO radical scavenging ability, 70% acetone extracts of the Vaccinium oldhami fruit showed 60% at 500 ${\mu}g/ml$. $ABTS{\cdot}^+$ cation radical scavenging activity of the Vaccinium oldhami fruit at a concentration of 1000 ${\mu}g/ml$ was 75.7%. Also, hydrogen peroxide scavenging activity of 70% acetone extracts showed 80.8% at 100 ${\mu}g/ml$, whichwas higher than BHA. In the natural compound market, the most important factors are the ability to obtain high effects of a material in low concentrations and a long-lasting supply. The Vaccinium oldhami fruit can be harvested every year - this fulfills one of the requirements. From these results, we can confirm that the Vaccinium oldhami fruit has anti-oxidant abilities and has potential as a natural anti-oxidant agent to be utilized in the cosmeceutical and bio-industries.

Analysis of Nutritional Compounds and Antioxidant Effect of Freeze-Dried powder of the Honey Bee (Apis mellifera L.) Drone (Pupal stage) (서양종 꿀벌(Apis mellifera L.) 수벌번데기 동결건조 분말의 영양학적 성분 및 항산화 효과)

  • Kim, Jung-Eun;Kim, Do-Ik;Koo, Hui-Yeon;Kim, Hyeon-Jin;Kim, Seong-Yeon;Lee, Yoo-Beom;Kim, Ji-Soo;Kim, Ho-Hyuk;Moon, Jae-Hak;Choi, Yong-Soo
    • Korean journal of applied entomology
    • /
    • v.59 no.3
    • /
    • pp.265-275
    • /
    • 2020
  • In this study, we analyzed the nutritional ingredients of drone pupae (16th to 20th instar old) to evaluate the value of bee products and provide basic data for product diversification, and the extracts prepared using these pupae were tested for physiological activity. According to the analysis of the general ingredients of the freeze-dried powder of these bee pupae, the moisture, crude protein, crude fat, and crude ash was 1.69 ± 0.07%, 48.52 ± 0.20%, 23.41 ± 0.14%, and 4.05 ± 0.02%, respectively. Vitamin C and vitamin E were 14.92 ± 0.52 mg/100 g and 6.06 ± 0.11 mg α-TE/100 g, respectively. Regarding minerals, the highest content of K (1349.13 ± 34.57 mg/100 g) and P (1323.55 ± 43.85 mg/100 g) was observed and Ca and Fe were 55.43 ± 1.51 mg/100 g and 5.49 ± 0.19 mg/100 g, respectively. The fatty acids of the water extracted freeze-dried pupae powder accounted for approximately 59.62 of saturated fatty acids and 40.38 of unsaturated fatty acids, and high-quality fatty acids such as palmitic acid (C16:0) was 35.49 ± 0.08 and oleic acid (C18:1, n-9) was 35.91 ± 0.22 (g/100 g total fatty acids). The total amino acid content was 38.99 ± 2.63 g/100 g and the free amino acid was a total of 5129.04 mg/100 g, of which 1257.68 mg/100 g was proline and 759.12 mg/100 g glutamic acid. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the drone pupae extract showed values of 0.8 for distilled water extract, 3.2 for 50% EtOH extract, 6.4 for 70% EtOH extract, and approximately 90% for 32 ㎍/mL for 100% EtOH extract. These results suggest that the main compound contributing to the antioxidant activity is a polar compound, and it is highly likely to be a low-molecular protein or a free amino acid. In conclusion, the honey bee drone pupa is excellent as a food resource and can be utilized as a new functional material for food and functional food.

Study on the Latent Heat Characteristics of the Organic Compound, $C_{28}H_{58}$ and the Inorganic Compound, $CH_3COONa{\cdot}3H_2O$ (유기잠열재, $C_{28}H_{58}$과 무기잠열재, $CH_3COONa{\cdot}3H_2O$의 잠열특성연구)

  • Song, Hyun-Kap;Ryou, Young-Sun
    • Solar Energy
    • /
    • v.11 no.3
    • /
    • pp.53-61
    • /
    • 1991
  • In this research, Octacosane($C_{28}H_{58}$) and Sodium Acetate Trihydrate($CH_3COONa{\cdot}3H_2O$) were selected as latent heat storage materials to store off-peak electricity or waste heat of an industrial plant. Experimental analyses were performed in terms of the variation of phase change temperature and latent heat, phase change stability for the long term utilization. The results were as follows. 1. The phase change temperatures of industrial grade Octacosane and Sodium Acetate Trihydrate were $60.7^{\circ}C$ and $57.4^{\circ}C$, the latent heat were 60.6kcal/kg and 51.1kcal/kg respectively. 2. The latent heat quantity of Octacosane was decreased with the increasing number of phase change cycles. It decreased from 60.6kcal/kg to 47.2kcal/kg upto 200 cycles and then no variation was observed after 200 cycles. 3. To prevent the supercooling of Sodium Acetate Trihydrate, the nucleating agent, Sodium Pyrophosphate Decahydrate of 3 wt% was added, and then the supercooling temperature (Tm-Tsc) was decreased from $25.7^{\circ}C$ to $1^{\circ}C$. The phase separation was disappeared by the addition of CMC-Na of 3 wt% as a thickener. It was found that the optimal quantity of nucleating agent and thickener was 4wt% considering the stability of SAT as a latent heat storage material. 4. The phase change temperature of Sodium Acetate Trihydrate($CH_3COONa{\cdot}3H_2O$) was adjusted from 57.4 to $46.2^{\circ}C$ by the addition of UREA. And then the latent heat quantity was decreased from 51.1 to 38.3kcal/kg. 5. When the heat storage capacities between the sensible and latent heat storage materials were analyzed and compared in heating process from 30 to $90^{\circ}C$, the heat storage capacity of Octacosane was 2.45 times larger than water and 12.5 times than granite at $60.7^{\circ}C$, and the heat storage capacity of Sodium Acetate Trihydrate was 2.53 times larger than water and 12.91 times than granite at $57.4^{\circ}C$.

  • PDF

Characterization of compounds and quantitative analysis of oleuropein in commercial olive leaf extracts (상업용 올리브 잎 추출물의 화합물 특성과 이들의 oleuropein 함량 비교분석)

  • Park, Mi Hyeon;Kim, Doo-Young;Arbianto, Alfan Danny;Kim, Jung-Hee;Lee, Seong Mi;Ryu, Hyung Won;Oh, Sei-Ryang
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.113-119
    • /
    • 2021
  • Olive (Olea europaea L.) leaves, a raw material for health functional foods and cosmetics have abundant polyphenols including oleuropein (major bioactive compound) with various biological activities: antioxidant, antibacterial, antiviral, anticancer activity, and inhibit platelet activation. Oleuropein has been reported as skin protectant, antioxidant, anti-ageing, anti-cancer, anti-inflammation, anti-atherogenic, anti-viral, and anti-microbial activity. Despite oleuropein is the important compound in olive leaves, there is still no quantitative approach to reveal oleuropein content in commercial products. Therefore, a validated method of analysis has to develop for oleuropein. In this study, the components and oleuropein content in 10 types of products were analyzed using a developed method with ultra-performance liquid chromatography to quadrupole time-of-flight mass spectrometry, charge of aerosol detector, and photodiode array. The total of 18 compounds including iridoids (1, 3, 4, 14, and 16-18), coumarin (2), phenylethanoids (5, 9, and 11), flavonoids (6-8, 10, 12, and 13), lignan (15), were tentatively identified in the leaves extract based high resolution mass spectrometry data, and the content of oleuropein in each product was almost identical between two detection methods. The oleuropein in three commercial product (A, G, H) was contained more over the suggested content, and it of five products (B, E, H, I, J) were analyzed within 5-10% error range. However, the two products (C, D) were found far lower than suggested contents. This study provides that analytical results of oleuropein could be a potential information for the quality control of leaf extract for a manufactured functional food.

Analysis of Nutritional Components, Volatile Properties, and Sensory Attributes of Cynanchi wilfordii Radix: Characterization Study (백하수오의 식품학적 영양 성분 및 휘발성 향기 성분 분석을 통한 관능적 특성 검토)

  • Lim, Ho-Jeong;Kim, Jae-Kyeom;Cho, Kye Man;Joo, Ok Soo;Nam, Sang Hae;Lee, Shin-Woo;Kim, Hyun Joon;Shin, Eui-Cheol
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.564-572
    • /
    • 2015
  • Nutritional compositions, volatile compounds, and sensory attributes of Cynanchi wilfordii Radix were analyzed in order to examine its practical utilization as a food resource. In the proximate analysis, protein and lipid contents were shown to be 14.6 and 5.0 mg/100 g, respectively, in C. wilfordii Radix. Potassium was the most predominant mineral (809 mg/100 g), as determined by inductively coupled plasma-optical emission spectrometry in parallel with microwave acid digestion. Total phenolic content was found to be 410 mg/100 g. Further, arginine and linoleic acid were the most abundant amino acid and fatty acid of C. wilfordii Radix, respectively. To examine its functional properties, classical 2,2-diphenyl-1-picrylhydrazyl (DPPH) analysis was performed. As a result, the concentration of C. wilfordii Radix required to scavenge 50% of DPPH radicals was 1.16 mg of dried material. Lastly, in olfactory and sensory tests, ${\beta}$-eudesmol (woody odor) was the major flavor compound responsible for the bitter taste and sensory attributes of C. wilfordii Radix. Taken altogether, the above results provide important preliminary results for utilization of C. wilfordii Radix as a food resource.

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.