• Title/Summary/Keyword: Composite-sintered

Search Result 365, Processing Time 0.025 seconds

Composite Effect of Ag and Au in the $Bi_{1.84}\;Pb_{0.34}\;Sr_{1.91}\;Ca_{2.03}\;Cu_{3.06}\;O_{10+\delta}$(110K Phase) High-Tc Superconductor (Ag와 Au가 혼합된 $Bi_{1.84}\;Pb_{0.34}\;Sr_{1.91}\;Ca_{2.03}\;Cu_{3.06}\;O_{10+\delta}$ 산화물 고온초전도체의 초전도특성)

  • 이민수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.241-248
    • /
    • 2003
  • $Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+\delta}$ high $T_{c}$ superconductors containing Ag as an additive were fabricated by a solid-state reaction method. The superconducting properties, such as the structural characteristics, the critical temperatures, the grain size and the image of mapping on the surface were investigated. Samples with Ag and Au of 50 wt% each were sintered at various temperature(820~$850^{\circ}C$). The structural characteristics, the microstructure of surface and the critical temperature with respect to the each samples were analyzed by XRD and SEM, EDS and four-prove methode respectively. The critical temperature showed the result which the Ag additive samples are higher than Au additive samples. The microstructure of the surface showed the tendency which the Ag additive samples become more minuteness than Au additive samples.

Effect of MgO Addition Affecting in Zirconia-Frit Composites' Sintering and Properties of Matter (Zirconia-Frit composites의 소결 및 물성에 미치는 MgO 첨가의 효과)

  • Kwon, Eun-Ja;Lee, Gyu-Sun
    • Journal of Technologic Dentistry
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • This study sought to apply different MgO additions to Zirconia (20wt % Frit) and thereby determine its mechanical properties depending upon variation of temperature, as a part of elementary study. First, in terms of sintering density depending on sintering conditions, it was found that sintering density increased as temperature varied from $1100^{\circ}C$ to $1300^{\circ}C$. As the addition of MgO increased, it was found that sintering density tended to decrease at each temperature. For the maximum sintering density obtained from pellet, it was found that 3wt% MgO addition specimens sintered at $1300^{\circ}C$ had its maximum sintering density as high as 97.39%. This study measured mechanical properties of these specimens, and it was found that their bending strength tended to decrease as the content of MgO addition increased. And it was found that their bending strength reached up to 162 MPa when 3wt% MgO was added to them for sintering process at $1300^{\circ}\Delta C$. It was also found that those specimens had Vickers microhardness up to 4.6 GPa when 5wt% MgO was added to them for sintering process at $1300^{\circ}C$.

Microstructure and Wear Resistance Properties of Cu-W Sintered Materials Fabricated by Hot Pressing (Hot pressing으로 제조된 Cu-W계 소결재의 미세조직 및 내마모특성)

  • Park, Ji-Hwan;Kim, Su-Bang;Park, Yun-U
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.227-232
    • /
    • 2000
  • Cu-W composites containing 20wt.% W were fabricated by hot pressing. Hot pressing was carried out at temperatures ranging from 800 to $1000^{\circ}C$ under pressures of 15MPa for 30MPa for 30min and 60min. This process gave composites of higher density, higher hardness and higher wear resistance than the conventional sintering processes. However, the microstructure of Cu-W composites under pressure of 15MPa revealed there was an inhomogeneous distribution of W, segregation of W on some area. These undesirable results are attributed to the immiscibility of W in Cu and the pressure effect on sintering.

  • PDF

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Effect of Sintering Temperature on Microstructure and Mechanical Properties of Cu Particles Dispersed Al2O3 Nanocomposites (Cu 입자분산 Al2O3 나노복합재료의 미세조직과 기계적 특성에 미치는 소결온도의 영향)

  • Jeong, Young-Keun;Oh, Sung-Tag;Choa, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.13 no.5 s.58
    • /
    • pp.366-370
    • /
    • 2006
  • The microstructure and mechanical properties of hot-pressed $Al_2O_3/Cu$ composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at $1450^{\circ}C$, showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.

Densification and Some Properties of Carbon Nanotubes-Dispersed Al2O3 Nanocomposite Powders (탄소나노튜브가 분산된 Al2O3 나노복합분말의 치밀화 및 특성)

  • Yoo Seung-Hwa;Yang Jae-Kyo;Oh Sung-Tag;Kang Kae-Myung;Kang Sung-Goon;Choa Yong-Ho
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.393-398
    • /
    • 2005
  • In-situ processing route was adopted to disperse carbon nanotubes (CNTs) into $Al_2O_3$ powders homogeneously. The $Al_2O_3$ composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for in-situ formation of CNTs on nano-sized Fe dispersed $Al_2O_3$ powders. CNTs/Fe/$Al_2O_3$ nanopowders were densified by spark plasma sintering (SPS). The hardness and bending strength as well as electrical conductivity increased with increasing sintering temperature. However, the electrical conductivity of the composites sintered at above $1500^{\circ}C$ showed decreased value with increasing sintering temperature due to the oxidation of CNTs.

Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Ryi, Shin-Kun;Park, Jong-Soo;Cho, Sung-Ho;Hwang, Kyong-Ran;Kim, Sung-Hyun
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.133-139
    • /
    • 2007
  • Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

Spray Drying of Zirconia/Alumina Composite Powder Using PVP as a Binder (PVP 결합제를 이용한 지르코니아/알루미나 복합분말의 분무건조)

  • Shim, Hyung-Bo;Moon, Joo-Ho;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.5
    • /
    • pp.446-451
    • /
    • 2002
  • Zirconia/alumina mixture powder was spray-dried various degree of dispersion, type of dispersants and powder content in the slurry. The quality of the granule was determined by observation of the granule shapes after spray drying and fracture of intergranular boundaries during pressing. Defect-free granules were obtained from the powders that formed weak flocs in the slurry. The granules, spray-dried from the slurry containing 32.5 vol% powder mixture and PVP as binder, were fractured completely during shaping and the sintered specimens showed a density of 99.7% and a flexural strength of 850 MPa.

Extrusion of Spur Gear Using High-Energy Ball Milled Al-78Zn Powder (고에너지 볼밀법으로 제조된 Al-78Zn Powder를 이용한 스퍼기어의 압출)

  • Kim, Jin-Woo;Lee, Sang-Jin;Lee, Jung-Min;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.440-446
    • /
    • 2009
  • This paper was designed to fabricate the miniature spur gear with pitch circle of 2.25mm using extrusion process of a mechanically alloyed Al-78wt%Zn powder. The mechanical alloying of the powder particles were performed for ball milled times of 4h, 8h, 16 and 32h by the planetary ball milling. The mechanical properties of these alloyed powders, which were compacted and sintered-cylindrical preforms, were estimated using compression test. The results showed that the alloyed powder with average particle size of $10{\mu}m$ milled for 32h has the highest compressive(fractured) strength(288MPa). Extrusions of the miniature spur gear using the alloyed powder were carried out at different extrusion temperatures. Extrusion temperature of $300^{\circ}C$ provided the spur gear with the highest relative density and Vickers hardness and without any surface defects.

Synthesis of the Low-Temperature Sintered Alumina Ceramic Composite(I) (저온소결용 알루미나 세라믹스 복합체 합성(I))

  • 김병익
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.19-30
    • /
    • 1998
  • Aluminium secondary butoxide(ASB)를 출발물질로 하여 졸-겔방법에 의해 소결거 동에 미치는 $\alpha$-Al2O3 seed의 첨가효과에 따른 알루미나의 저온소결 가능성과 알루미나의 상전이에 대하여 TEM, DTA, XRD, FT-IR등으로 고찰을 하였다. TEM 분석결과 초기 생 성물인 boehmite가 비정질에서 단결정질로 진행되어 가고 있음을 확인하였다. 그리고 DTA 분석결과 $\alpha$-Al2O3 seed의 첨가한 경우 seed의 함량이 증가함에 따라 상전이 온도는 점차 낮아졌으며 약 0.4wt%일 때 seed를 첨가하지 않은 시료의 전이온도(약 1126$^{\circ}C$)에 비하여 약 7$0^{\circ}C$ 저하된 약 1056$^{\circ}C$로나타났으며 그 이상의 seedcja가에 있어서는 전이온도에 크게 영향을 나타내지 않았다. 또한 XRD분석결과 $\alpha$-Al2O3 seed를 첨가하지 않은 경우 110$0^{\circ}C$이 상의 온도에서 $\alpha$상이 생성되었음을 알수 있었다. 또한 100$0^{\circ}C$이상의 온도에서 $\alpha$상이 생성 되었음을 나타내는 Al-O 흡수특성 피크가 400~1000cm-1 범위에서 나타내고 있는 것을 FT-IR 분석결과에서도 확인할수 있었다. 그리고 $\alpha$-Al2O3 seed를 약 0.4wt% 첨가시 900~ 95$0^{\circ}C$에서 $\alpha$상이 형성됨을 관찰할 수 있었다.