Thermally Stabilized Porous Nickel Support of Palladium Based Alloy Membrane for High Temperature Hydrogen Separation

  • Published : 2007.06.01

Abstract

Nickel powder was coated with aluminum nitrate solution to increase the thermal stability of a porous nickel support and control the nickel content in the Pd-Cu-Ni ternary alloyed membrane. Raw nickel powder and alumina coated nickel powder were uniaxialy pressed by home made press with metal cylindrical mold. Though the used nickel powder prepared by pulsed wire evaporation (PWE) method has a good thermal stability, the porous nickel support was too much sintered and the pores of porous nickel support was plugged at high temperature (over $800^{\circ}C$) making it not suitable for the porous support of a palladium based composite membrane. In order to overcome this problem, the nickel powder was coated by alumina and alumina modified porous nickel support resists up to $1000^{\circ}C$ without pore destruction. Furthermore, the compositions of Pd-Cu-Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow could be controlled by not only Cu-reflow temperature but also alumina coating amount. SEM analysis and mercury porosimeter analysis evidenced that the alumina coated on the surface of nickel powder interrupted nickel sintering.

Keywords

References

  1. P. Pandey. and R.S. Chauhan, Prog. Polym Sci, 853, 26 (2001)
  2. A.K. Prabhu, and S.T. Oyama, J. Membr. Sci., 233, 176 (2000)
  3. J.N. Armor, J. Membr. Sci., 217, 147 (1998)
  4. S. Adhikari and S. Fernando, Ind. Eng. Chem. Res., 875, 45 (2006)
  5. V. Jayaraman, Y.S. Lin, M. Pakala, and R.Y. Lin, J. Membr. Sci., 89, 99 (1995)
  6. S. Tosti, L. Bettinali, S. Castelli, F. Sarto, S. Scaglione, and V. Violante, J. Membr. Sci., 241, 196 (2002)
  7. N. ltoh, N. Tomura, T. Tsuji, and M. Hongo, Micropor. Mesopor. Mat., 103, 39 (2000)
  8. P.M. Thoen, F. Roa, J.D. Way, Desalination, 244, 193 (2006)
  9. F. Roa, J.D. Way, R.L. McCormick, and S.N. Paglieri, Chem. Eng. J., 11, 93 (2003)
  10. D.J. Edlund and J. McCarthy, J. Membr. Sci., 147, 107 (1995)
  11. J. Shu, A. Adnot, B.P.A. Grandjean, S. Kaliaguine, Thin Solid Film, 72, 286 (1996)
  12. K.S. Rothenberger, A.V. Cugini, B.H. Howard, R.P. Killmeyer, M.V. Ciocco, B.D. Morreale, R.M. Enick, F. ustamante, I.P. Mardilovich, Y.M. Ma, J. Membr. Sci., 55, 244 (2004)
  13. J. Tong, R. Shirai, Y. Kashima, and Y. Matsumura, J. Membr. Sci., 84, 260 (2005)
  14. J. Tong, Y. Matsumura, H. Suda, and K. Haraya, Sep. Purif. Technol., 1, 46 (2005)
  15. D. Yepes, L.M. Comaglia, S. Irusta, E.A. Lombardo, J. Membr. Sci., 92, 274 (2006)
  16. N. Jemaa, J. Shu, S. Kaliaguine, B.P.A. Grandjean, Ind. Eng. Chem, Res., 973, 35 (1996)
  17. P.P. Mardilovich, Y. She, Y.H. Ma, and M.H. Rei, AIChE, 310, 44 (1998)
  18. S.E. Nam, S.H. Lee, and K.H. Lee, J. Membr. Sci., 163, 153 (1999)
  19. F.C. Gielens, H.D. Tong, C.J.M. van Rijn, MAG. Vorstman, J.T.F. Keurentjes, J. Membr. Sci., 203, 243 (2004)
  20. Y. Zhang, J. Gwak, Y. Murakoshi, T. Ikehara, R. Meada, C. Nishimura, J. Membr. Sci., 203, 277 (2006)
  21. S.-K. Ryi, J.-S. Park, S.-H. Kim, S.-H. Cho, J.-S. Park, D.-W. Kim, J. Membr. Sci., 439, 279 (2006)
  22. S.-K. Ryi, J.-S. Park, S.-H. Kim, S.-H. Cho, D.-W. Kim, K.-Y. Urn, Sep. Purif. Technol., 82, 50 (2006)
  23. C.Y. Wen, E.S. Lee, Coal conversion technology, Addision-Wesley, Massachusetts, 1979
  24. D.L. Klass, Academic Press, San Diego, 1998
  25. S.-K. Ryi, J.-S. Park, S.-H. Choi, S.-H. Cho, S.-H. Kim, Chem. Eng. J., 47, 113 (2005)
  26. S.-K. Ryi, J-S. Park, S.-H. Cho, S.-H. Kim, J. Power Source, 1234, 161 (2006)
  27. S. Uemiya, Sep. Purif. Methods, 51, 28 (1999)
  28. S.-K. Ryi, J.-S. Park, S.-H. Kim, S.-H. Cho, D.-W. Kim, J. Membr. Sci., 884, 280 (2006)
  29. B. McCool, G. Xomeritakis, Y.S. Lin, J. Membr. Sci., 67, 161 (1999)
  30. D.-W. Kim, K.-Y. Urn, H.-G. Kim, I.-S. Lee, S.-H. Kim, J.-S. Park, S.-K. Ryi, S.-H. Cho, Japanese J. Appl. Phy., L233, 44 (2005)