• 제목/요약/키워드: Composite structure

검색결과 3,419건 처리시간 0.028초

마이크로팩토리 용 미세방전 공작기계의 고강성/고감쇠 설계 (Design of EDM Machine Tool Structures for Microfactory with High Stiffness and Damping Characteristics)

  • 김주호;장승환
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, foam-composite sandwich structures for EDM machine tool components such as column and column block designed by controlling stacking sequences and cross-sectional dimensions of the composite structures. The original column block is a box-shaped structure made of aluminum connecting a column and a Z-stage of the system. This research was focused on the design of efficient column block structure using a foam-composite sandwich structure which have good bending stiffness and damping characteristics to reduce the mass and increase damping ratio of the system. Vibration tests for getting damping ratio with respect to the stacking angle and thickness of the composites were carried out. Finite element analyses for static defection and vibration behaviour were also carried out to find out the appropriate stacking conditions; that is, stacking sequence and rib configuration. From the test and analysis results it was found that composite-foam sandwich structures for the microfactory system can be successful alternatives for high precision machining.

계면 개선을 통한 타이타늄 탄/질화물 금속 복합재료의 기계적 물성 향상 (Improvement of the mechanical properties of titanium carbonitride-metal composites by modification of interfaces)

  • 권한중
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.114-131
    • /
    • 2020
  • Fracture in the titanium carbonitride-metal composites occurs by crack propagation through the carbonitride grains or in the interfaces. Thus, intrinsic properties of the carbonitride need to be enhanced and the interfaces should be also modified to coherent structure to strengthen the composites. Especially, interfacial structure can be the main factor to determine the mechanical properties of titanium carbonitride-metal composites because the interfaces between carbonitride grains and metallic phase are weak parts due to heterogeneous nature of carbonitride and metallic phase. In this paper, methodologies for improving the interfacial structure of titanium carbonitride-metal composites are suggested. Total area of the interfaces can be reduced using solid solution type carbonitrides as raw materials instead of a mixture of various carbonitrides in the composites. Also, synthesis of titanium carbonitride-metal composite powders and the low-temperature sintering of the composite powders for short time can be the way for formation of coherent interfaces. The sintering of the composite powders for short time at low temperature can reduce the potential of formation of interfaces by dissolution and precipitation of carbonitride in the liquid metal. As a result of formation of coherent boundaries due to low-temperature and short-time sintering, interfaces between titanium carbonitride grains and metallic phase have the favorable structure for the enhanced fracture toughness. It is believed that the low-temperature sintering of solid solution type composite powders for short time can be the way to improve the low toughness of the titanium carbonitride-metal composites.

Experimental investigation on the behaviour of UHPC-steel composite slabs under hogging moment

  • Gao, Xiao-Long;Wang, Jun-Yan;Bian, Chen;Xiao, Ru-Cheng;Ma, Biao
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.765-777
    • /
    • 2022
  • Ultra high performance concrete (UHPC) can be used in the UHPC-steel composite structures especially for bridge structures to achieve high stiffness and high fatigue resistance with low self-weight. The structural performances of UHPC-steel composite slabs subjected to hogging moment have a significant influence on the global stiffness and durability of UHPC-steel composite structures. In order to study the structural behaviors of non-steam-cured UHPC-steel composite slabs subjected to negative moment, five composite slabs combined the thin UHPC layers to steel plates via shear stud connecters with the diameter of 16mm were fabricated and tested under negative moment. The test program aimed to investigate the effect of stud spacing and longitudinal reinforcement ratios on the failure mode, load-deflection behaviors, cracking patterns, bond-slips, and carrying capacities of composite slabs subjected to negative moment. In addition, direct tensile tests for the dog-bone UHPC specimens with longitudinal reinforcement bars were carried out to study the effect of reinforcement bars on the tensile strength of UHPC in the thin structure members. Based on the experimental results, analytical models were also developed to predict the cracking load and ultimate load of UHPC-steel composite slabs subjected to negative moment.

에폭시-그래나이트재를 이용한 연삭기 베드의 설계 및 동특성 해석 (The Design and Dynamic Characteristics Analysis of the Grinder Bed using Epoxy-Granite)

  • 박영일
    • 한국생산제조학회지
    • /
    • 제8권2호
    • /
    • pp.62-72
    • /
    • 1999
  • In this study, the griding machine bed was designed and analyzed by using epoxy-granite. Finite element technique was employed to design and analyze the composite bed structure. Von Mises stress and relative displacements between a tool and a workpiece were checked to compare a cast iron bed structure with a composite bed structure. Dynamic features of structures were also studied according to the process of modal analysis through natural frequency and mode shape measurement. Another improved model was also designed using the accumulation of knowledge based on the use of the structural analysis and experiments. Comparing with the cast iron bed structure, the composite bed structure maintains better functions.

  • PDF

점탄성-복합재 박판 블레이드 구조물의 진동 해석 (Dynamic Analysis of Viscoelastic Composite Thin-Walled Blade Structures)

  • 신재현;나성수;박철휴
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1684-1689
    • /
    • 2003
  • This paper concerns the analytical modeling and dynamic analysis of advanced cantilevered blade structure implemented by a dual approach based on structural tailoring and viscoelastic materials technology. Whereas structural tailoring uses the directionality properties of advanced composite materials, the passive materials technology exploits the damping capabilities of viscoelastic material(VEM) embedded into the host structure. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias. The case of VEM spreaded over the entire span of the structure is considered. The displayed numerical results provide a comprehensive picture of the synergisitic implications of the application of both techniques, namely, the tailoring and damping technology on vibration response of thin-walled beam structure exposed to external time-dependent excitations.

  • PDF

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • 국제초고층학회논문집
    • /
    • 제9권2호
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

신호의 투과/반사법을 이용한 복합재료 샌드위치 구조 속으로의 안테나 삽입 (Antenna Integration with Composite Sandwich Structure using Transmission/Reflection Methods of Incident Wave)

  • 유치상;황운봉
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.55-58
    • /
    • 2005
  • The present study aims to design electrically and structurally effective antenna structures in order that the structural surface itself could become the antenna. The basic design concept is composite sandwich structure in which microstrip antenna is embedded and this is termed composite smart structure (CSS). The most important outstanding problem is that composite materials of structural function cannot be used without reducing antenna efficiency. Unfortunately, such materials have high electrical loss. This is a significant design problem that needs to be solved in practical applications. Therefore, the effects of composites facesheet on antenna performances are investigated in the first stage and changes in the gain of microstrip antenna due to composites facesheet have been determined. ‘Open condition’ is defined when gain is maximized and is a significant new concept for the design of high-gain antennas considering bandwidth in practical application. The open condition can be made with the outer facesheet by controlling its position. In the design of CSS, glass/epoxy composites and Nomex honeycomb were used with exploiting open condition. Experiments, confirm that the gain is improved and the bandwidth is also as wide as specified in our requirements. With the open condition, wideband antenna can be integrated with mechanical structures without reducing any electrical performances, as confirmed experimentally here.

  • PDF

경량 복합재 차체 구조의 역설계를 통한 복합재료 라미나 물성 산출 기법 연구 (A Study on Calculation of Composites Lamina Material Properties through Reverse Engineering of Light Weight Composite Car-body)

  • 문진범;김지훈;장홍규;박지상
    • 한국자동차공학회논문집
    • /
    • 제25권1호
    • /
    • pp.1-10
    • /
    • 2017
  • In reverse engineering, one of the main tasks is reconstructing the mechanical properties of used materials. For an isotropic material, it could be defined by a single tensile test using a coupon extracted from the structure. In contrast, CFRP composites require many tests and complex procedures to define all the material properties because CFRP is an orthotropic material and a stacked laminate. In this paper, the procedure to reconstruct composite material properties is studied by using the classical lamination theory and the test data of three different laminates from a composite structure. A sample reconstruction of composite material properties using a composite car body is introduced to verify the method.

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad;Gerdooei, Mahdi;Nosrati, Hasan Ghaforian
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.737-745
    • /
    • 2020
  • Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.

소형 복합재 위성 구조체 개발 (Development of a Composite Spacecraft Structure for STSAT-3 Satellite Program)

  • 조희근;서정기;김병중;장태성;차원호;이대길;명로훈
    • 한국항공우주학회지
    • /
    • 제38권7호
    • /
    • pp.727-736
    • /
    • 2010
  • 과학기술위성 3호는 국내 최초의 전구조 복합재 위성이다. 이전에 개발된 위성은 대부분 태양전지판 등 부분적인 복합재 구조로 된 것도 있으나 전 구조 복합재 위성은 개발된 적이 없었다. 본 연구는 소형 복합재 위성의 버스 구조체 개발을 위한 복합재 응용 설계 및 제작 기술의 적용과 그 활용에 중점을 두고 있다. 특히 과학기술위성 3호의 버스구조체는 이전에 개발된 위성의 구조체 와는 전혀 다른 형태로 개발되었다.