• Title/Summary/Keyword: Composite shielding

Search Result 126, Processing Time 0.033 seconds

Mechanism to shield the electromagnetic wave interference in the carbon coils composites

  • Kang, Gi-Hwan;Kim, Sung-Hoon;Kim, Saehyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.275-276
    • /
    • 2014
  • The electromagnetic wave shielding properties of the carbon coils with polyurethane composites were investigated in the frequency range of 0.25 ~ 1.5 GHz. The shielding effectiveness of the composite having the various-shaped carbon coils were measured and discussed according to the weight percent of the carbon coils in the composites with the thickness of the composites layers. We confirmed that the absorption was the main mechanism to shield the electromagnetic wave interference in the carbon coils composites.

  • PDF

Fabrication and Electromagnetic Characteristics of Multi-walled Carbon nanotube/Epoxy Composites (다중벽 나노튜브/에폭시 복합재의 제작과 전자기적 특성)

  • 이상의;박기연;이원준;김천곤;한재흥
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.107-110
    • /
    • 2003
  • The electromagnetic intereference(EMI) shielding is very essential for commercial and military purposes. We fabricated multi-walled carbon nanoube(MWNT)/epoxy composites and studied the electromagnetic characteristics of the composites before we study the characteristics of MWNT-filled glass fiber-reinforced composites. After setting up the fabrication process, we measured the permittivities of MWNT/epoxy composites with process variables and MWNT concentrations in X-band(8.2GHz- 12.4GHz). Process variables changed the degree of dispersion, which influenced permittivities and permittivities increased rapidly from 0.5wt% to 1.0wt%.

  • PDF

Electromagnetic Characteristics of Carbon Black filled Class-Fabric Composite Sandwich Structure (카본블랙이 첨가된 유리직물 복합재 샌드위치 구조의 전자기적 특성)

  • Park, Ki-Yeon;Lee, Sang-Eui;Kang, Lae-Hyong;Han, Jae-Hung;Kim, Chun-Gong;Lee, In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.234-237
    • /
    • 2003
  • The absorption and the interference shielding of the electromagnetic wave problem have been a very important issue for commercial and military purposes. This study dealt with the simulation reflection loss for electromagnetic absorbing sandwich type structures in X-band(8.2Ghz~12.4GHz). Glass/epoxy composites containing conductive carbon blacks were used for the face sheets and styrofoams were used for the core. Their permittivities in X-band were measured using the transmission line technique. Simulation results of 3-1ayered sandwich type structures showed the reflection loss using the theory about transmission and reflection in a multi-layered medium.

  • PDF

In Situ Observation of Slow Crack Growth in a Whisker-Reinforced Alumina Matrix Composite (SiC 휘스커 보강 알루미나 복합재료에서 Slow Crack Growth 현상의 직접관찰 연구)

  • 손기선;김우상;이성학
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.203-213
    • /
    • 1996
  • In this study the subcritical crack growth behavior in an Al2O3-SiCw composite has been investigated using in situ fracture technique of applied moment double cantilever beam (AMDCB) specimens indside an SEM. This technique allows the detailed observation of whisker and grain bridging in the crack wake region. The experimental results indicated that the KI-a curve was deviated from the conventional powder law form and that the existed a region where the rate of microcrack growth was decreased with increasing the externally applied stress intensity factor. This behavior could be explained by arising crack growth resistance i.e. R-curve behavior which was associated with crack shielding due to whisker and grain bridging. The R-curve was also analyzed from the KI-a curve data in order to quantify the bridging effect in the Al2O3-SiCw composite.

  • PDF

Dispersion Characteristics of Magnetic Particle/Graphene Hybrid Based on Dispersant and Electromagnetic Interference Shielding Characteristics of Composites (분산제에 따른 자성금속 무전해도금 기반 그래핀 분산 특성 및 복합재의 전자파 차폐 특성 연구)

  • Lee, Kyunbae;Lee, Junsik;Jung, Byung Mun;Lee, Sang Bok;Kim, Taehoon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.111-116
    • /
    • 2018
  • In this paper, magnetic FeCoNi particles have been grown through electroless plating on the surface of graphene, and then this hybrid material has been dispersed by various surfactants to prepare films. The pyridine surfactant shows the highest dispersability and low surface resistance value (351 Ohm/sq) and the electromagnetic shielding ability at the frequency of 10 GHz. Specially, the evaporation of the pyridine during the drying process could be able to form the internal conductive network and high dispersion of FeCoNi on the surface of graphene.

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Lightweight Composite Electronics Housing Design of Modular Type for Space Applications (우주용 모듈화 형태의 경량 복합재료 전자장비 하우징 설계)

  • Jang, Tae-Seong;Cho, Hee-Keun;Seo, Hyun-Suk;Kim, Won-Seock;Rhee, Ju-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1209-1216
    • /
    • 2010
  • This paper dealt with an alternative for maximizing mass savings in spacecraft design by replacing conventional aluminum alloy housing used for various spacecraft avionics by composite materials. Key requirements were defined for the purpose of composite housing design with sufficient durability and various functionalities as well as more lightweight characteristics as compared with aluminum alloy widely-used for conventional electronics housing. Conceptual design was also carried out for manufacturing modular, lightweight composite electronic housing equipped with high thermal and electrical conductivities, EMI protection, and radiation shielding characteristics as well as excellent structural performance; feasibility of enhancing mass savings in spacecraft design was presented.

Stress-Strain Behavior and Electrical Resistive of Conductive Silver Particle/Silicone Composite Pastes with Surface Modification (표면처리에 따른 도전성 은입자/실리콘 복합 페이스트의 응력-변형율 거동 및 전기비저항 특성)

  • 이건웅;방대석;박민;조동환
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.61-67
    • /
    • 2004
  • This paper reports the electrical conductivity and the stress-strain behavior of silver particle-filled silicone composite pastes for electromagnetic interference (EMI) shielding gasket materials. The percolation threshold (critical concentration) of the composite paste obtained by incorporating irregular sphere-shaped silver particles and room temperature vulcanizing (RTV) silicone resin was determined from the electrical conductivity result. At about 28 vol% Beading of untreated silver particles, the percolation phenomenon occurred and at this critical concentration, the volumetric resistivity, the tensile strength, and the elongation of the pastes were investigated. This work also suggests that the stress-strain characteristics of a composite paste filled with metal particles above the percolation threshold may be effectively improved by properly selecting a coupling agent.

Finite element analysis of callus generation in fractured bones according to the strain distribution (골절부 변형률에 따른 골절부 가골 형성 과정의 유한요소해석)

  • Kim, Suk-Hun;Park, Myong-Gil;An, Song-Tao;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 2009
  • In this paper, finite element analyses were used to estimate the strain distribution at the fracture site of a tibia bone. A stainless steel bone plate and various composite bone plates were considered to find out the best conditions for callus generation while bone fracture was cured for 16 weeks. Through this research, the appropriate load condition which makes the strains between the appropriate range($2{\sim}10%$) was sought. From this analysis, it was found that lower level of external load is needed for the appropriate strain for the case of composite bone plate application and it was also found that the composite bone plate had potential advantages for effective bone fracture healing relieved stress shielding effect.

Measurement Algorithms of Sizing removed state using Image Process And Development of Carbon fibers with Electromagnetic shielding Performance (영상처리를 이용한 사이징 제거 상태 측정 알고리즘과 전자파 차폐 성능을 갖는 탄소 섬유 개발)

  • Cho, Joon-Ho;Jeon, Kwan-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2017
  • In this paper, the sizing removal condition for the pretreatment of composite materials is obtained numerically by applying an image processing algorithm and nickel-plated carbon fiber is fabricated by a dry process method to enhance its electromagnetic shielding performance. Sizings that are wrapped in a polymer type material during the manufacturing of carbon fiber should be removed for dry coating. A numerical value, that is the correlation, can be obtained by determining the regular pattern of the carbon fiber in the image taken by a scanning electron microscope (SEM) after the sizing is removed. The application of the proposed numerical method to the SEM image of the fiber after the sizing is removed with solution, compressed air, solution and compressed air (hybrid), showed that this method of eliminating the sizing is superior to the hybrid method. Then, by spreading the carbon fiber roll with the sizing removed, we were able to produce nickel plated carbon fiber by the roll-to-roll sputtering method. The electromagnetic shielding performance of the fabricated 30, 40 and 100 nickel coated carbon fibers was measured. The Korea Advanced Institute of Science and Technology evaluated the electromagnetic shielding performance of the 100 nickel-coated carbon fiber to have a maximum value of 73.2 (dB) and a minimum value of 66.7 (dB). This is similar to the electromagnetic shielding rate of copper and shows that this material can be used as a cable for EV / HEV automobiles.