• Title/Summary/Keyword: Composite shell structure

Search Result 199, Processing Time 0.027 seconds

Active Vibration Control of Composite Shell Structure using Modal Sensor/Actuator System

  • Kim, Seung-Jo;Hwang, Joon-Seok;Mok, Ji-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.106-117
    • /
    • 2006
  • The active vibration control of composite shell structure has been performed with the optimized sensor/actuator system. For the design of sensor/actuator system, a method based on finite element technique is developed. The nine-node Mindlin shell element has been used for modeling the integrated system of laminated composite shell with PVDF sensor/actuator. The distributed selective modal sensor/actuator system is established to prevent the effect of spillover. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Continuous electrode patterns are discretized according to finite element mesh, and orientation angle is encoded into discrete values using binary string. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator for the first and the second mode vibration control of singly curved cantilevered composite shell structure are designed with the method developed on the finite element method and optimization. For verification, the experimental test of the active vibration control is performed for the composite shell structure. Discrete LQG method is used as a control law.

Effect of Anionic Surfactants in Synthesizing Silicone Dioxide/Styrene Core-Shell Polymer(II) (이산화규소/스티렌 코어-셀 합성에서 음이온 계면활성제의 영향(II))

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.74-79
    • /
    • 2009
  • The inorganic-organic composite particles with core-shell structure were polymerized by using styrene and potassium persulfate (KPS) as a shell monomer and an initiator, respectively. We studied the effect of surfactants on the core-shell structure of silicone dioxide/styrene composite particles polymerized in the presence of sodium dodecyl sulfate(SDS), polyoxyethylene alkylether sulfate (EU-S133D), and at none surfactant condition. We found that $SiO_2$ core / polystyrene(PS) shell structure was formed when polymerization of styrene was conducted on the surface of $SiO_2$ particles, and the concentration SDS and EU-Sl33D was $8.34{\times}10^{-2}mole/L$. The core-shell structure was confirmed by measuring the thermal decomposition of the polymer composite using thermogravimetric analyzer (TGA), and the morphology of the composite particles was characterized by transmission electron microscope (TEM).

Electric field strength effect on bi-stability of composite thin cylindrical shell with piezoelectric layer

  • Yaopeng Wu;Nan Zheng;Yaohuan Wu;Quan Yang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.571-578
    • /
    • 2024
  • The bistable thin cylindrical shell is developable structure with the ability to transition between its two stable configurations. This structure offers significant potential applications due to its excellent deformability. In this paper, the composite thin cylindrical shell consisting of the composite layer and the piezoelectric layer was investigated. The material and geometric parameters of the shell were found to influence its stable characteristics. The analysis model of the composite thin cylindrical shell incorporating the piezoelectric layer was developed, and the expressions for its strain energy were derived. By applying the minimum energy principle, the impact of the electric field intensity on the bi-stable behaviors of the cylindrical shell was analyzed. The results showed that the shell exhibited the bistability only under the appropriate electric field strength. And the accuracy of the theoretical prediction was verified by simulation experiments. This study provides an important reference for the application of deployable structures.

Dvnarnic Reswnse of Laminated Com~osite Shell under Low-Velocity Impact (복합적층쉘의 저속충격에 대한 동적 거동 해석)

  • 조종두;조영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.969-974
    • /
    • 1994
  • The dynamic behavior of graphite/epoxy laminated composite shell structure due to low-velocity impact is investigated using the finite element method. In this analysis, the Newmark's constant-acceleration time integration algorithm is used. The impact response such as contact force, central deflection and dynamic strain history form shell structure analysis are compared with those form the plate non-linear analysis. The effects of curvature, impact velocity and mass of impactor on the composite shell are discussed.

  • PDF

Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water (실린더형 셸 구조물의 모드 특성 및 진동제어 : 공기중 및 수중 실험결과 비교)

  • Sohn, Jung-Woo;Kwon, Oh-Cheol;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.899-906
    • /
    • 2009
  • In the present paper, dynamic characteristics and vibration control performance of a cylindrical shell structure are experimentally investigated and results are presented in the air and underwater conditions. End-capped cylindrical shell structure is manufactured and macro-fiber composite(MFC) actuators are attached on the inside-surface of the structure. Modal characteristics are studied in the air and under the water conditions and then equation of motion of the structure is derived from the test results. Structural vibration control performances of the proposed structure are evaluated via experiments with optimal control algorithm. Vibration control performances are presented both in the frequency and time domains.

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs

  • Nezamoleslami, Reza;Khadem, Siamak E.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.249-264
    • /
    • 2017
  • In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.

Preparation of Methyl Methacrylate-Styrene System Core-Shell Latex by Emulsion Polymerization (유화중합에 의한 Methyl Methacrylate-Styrene계 Core-Shell 라텍스 입자 제조에 관한 연구)

  • Kim, Nam-Seok;Kim, Duck-Sool;Lee, Seok-Hee;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.96-105
    • /
    • 2005
  • Core-shell polymers of methyl methacrylate-styrene system were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) in an initiator and the characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, whereas polymer blends or copolymers show a combined physical properties of two homopolymers. This unique behavior of core-shell composite latex can be used in various industrial fields. However, in preparation of core-shell composite latex, several unexpected matters are observed, for examples, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve this matters, we study the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the core-shell structure of PMMA-PSt and PSt-PMMA. Particle size and particles distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass temperature was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions was measured.

The actuation equation of macro-fiber composite coupled plate and its active control over the vibration of plate and shell

  • Tu, Jianwei;Zhang, Jiarui;Zhu, Qianying;Liu, Fan;Luo, Wei
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.297-311
    • /
    • 2018
  • Plate and shell structure is widely applied in engineering, i.e. building roofs, aircraft wings, ship platforms, and satellite solar arrays. Its vibration problem has become increasingly prominent due to the tendency of lightening, upsizing and flexibility. As a new smart material with great actuating force and toughness, macro-fiber composite (MFC) is composed of piezoelectric fiber and epoxy resin basal body, which can be directly pasted onto the surface of plate and shell and is suitable for vibration control. This paper deduces the actuation equation of MFC coupled plate in different boundary conditions, an equivalent finite element modeling method is proposed which uses MFC actuating force as the applied excitation, and on this basis the active control simulation and experiment of MFC over plate and shell structure vibration are accomplished. The results indicate that MFC is able to implement effective control over plate and shell structure vibration in multi-band range. The comparison between experiment and simulation proves that the actuation equation deduced herein, effective and practicable, can be applied into the simulation calculation of MFC vibration control over plate and shell structure.

h Study on the Preparation of PMMA/PSt Composite Particles by Sequential Emulsion Polymerization (단계중합법에 의한 PMMA/PSt Composite Particle의 제조에 관한 연구)

  • 이선룡;설수덕
    • Polymer(Korea)
    • /
    • v.25 no.5
    • /
    • pp.617-624
    • /
    • 2001
  • The core-shell composite latexes were synthesized by stage emulsion polymerization of methyl methacrylate (MMA) and styrene (St) with ammonium persulfate after preparing monomer pre-emulsion in the presence of anionic surfactant. However, in preparation of core-shell composite latex, several unexpected results are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, We study the effect of initiator concentrations, surfactant concentrations, and reaction temperature on the core-shell structure of polymethyl methacrylate/polystyrene and polystyrene/polymethyl methacrylate. Particle size and particle size distribution were measured using particle size analyzer, and the morphology of the core-shell composite latex was determined using transmission electron microscope. Glass temperature was also measured using differential scanning calorimeter. To identify the core-shell structure, pH of the two composite latex solutions were measured.

  • PDF

On the fabrication of carbon fabric reinforced epoxy composite shell without joints and wrinkling

  • Vasanthanathan, A.;Nagaraj, P.;Muruganantham, B.
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.267-279
    • /
    • 2013
  • This article describes a simple and cost effective fabrication procedure by using hand lay-up technique that is employed for the manufacturing of thin-walled axi-symmetric composite shell structures with carbon, glass and hybrid woven fabric composite materials. The hand lay-up technique is very commonly used in aerospace and marine industries for making the complicated shell structures. A generic fabrication procedure is presented in this paper aimed at manufacture of plain Carbon Fabric Reinforced Plastic (CFRP) and Glass Fabric Reinforced Plastic (GFRP) shells using hand lay-up process. This paper delivers a technical breakthrough in fabrication of composite shell structures without any joints and wrinkling. The manufacture of stiffened CFRP shells, laminated CFRP shells and hybrid (carbon/glass/epoxy) composite shells which are valued by the aerospace industry for their high strength-to-weight ratio under axial loading have also been addressed in this paper. A fabrication process document which describes the major processing steps of the composite shell manufacturing process has been presented in this paper. A study of microstructure of the glass fabric/epoxy composite, carbon fabric/epoxy composite and hybrid carbon/glass/fabric epoxy composites using Scanning Electron Microscope (SEM) has been also carried out in this paper.