• Title/Summary/Keyword: Composite shell

Search Result 641, Processing Time 0.022 seconds

Preparation and Characterization of $CaCO_3$ Encapsulation by PMMA Core-Shell latex (PMMA와 캡슐화된 $CaCO_3$ Core-Shell 라텍스 제조와 물성연구)

  • Lim, Jong-Min;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.38 no.4
    • /
    • pp.303-315
    • /
    • 2003
  • Inorganic/organic composite particles were also synthesized by changing an initiator an it's concentration, concentration of an adsorbed surfactant, reaction temperature, and agitation speed in the presence of $CaCO_3$ adsorbed SDBS. The polymerization conditions were optimized according to the conversion of the core-shell composite particles. In the inorganic/organic core-shell composite particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt % was prepared first and then core $CaCO_3$ was encapsulated by sequential emulsion polymerization using MMA, concentration of APS $3.16{\times}10^{-3}mol/L$ to minimize the formation of new PMMA particle during MMA shell polymerization. The structure characterization of the inorganic/organic core-shell particles was verified by measuring the decomposition degree of $CaCO_3$ using HCl solution. It was found that $CaCO_3$ was encapsulated by shell PMMA due to having excellent dispersion in the epoxy resin, smooth surface distinctly from spindle shape, and broad particle distribution after the capsulation.

Synthesis and Effect of Plasma Treatment of Acrylic Composite Particle Binder (아크릴계 복합입자 바인더의 제조와 플라즈마 처리영향)

  • Sim, Dong-Hyun;Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.32 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • Kind of monomer(MMA, EA, BA, St)and the monomer ratio(80/20 to 20/80) where changed in the preparation of the core shell binder, and property was improved the plasma processing. Each material changed by plasma treatment time($1{\sim}10\;s$) to change to measure the tensile strength, contact angle and adhesion peel strength for the core shell binder optimal conditions for handling the output of the surface treatment. The type of polymerization and composition of the binder is a regardless initiator of APS, the reaction temperature of $85^{\circ}C$ to 0.3 wt% of the surfactant used to indicate when the conversion rate was the highest, core shell composite particle binder got two glass temperature curves. Core shell binder after the plasma processing contact angle change is the PEA/PSt 38 percent of cases within five seconds to indicate slight decrease was a decline rapidly if not handled $0^{\circ}$ to reach. Tensile strength PSt/PMMA varies $46.71{\sim}46.27\;kg_f$/2.5 cm and adhesion strength PEA/PMMA varies $7.89{\sim}14.44\;kg_f$/2.5 cm increases. Overall, adhesion strength of core shell composite particle is in the order of order PEA>PBA>PSt for shell monomer MMA.

Study on Evaluation Method of Structural Integrity of Cylindrical Composite Lattice Structures (원통형 복합재 격자구조체의 구조안전성 평가 기법 연구)

  • Im, Jae-Moon;Kang, Seung-Gu;Shin, Kwang-Bok;Lee, Sang-Woo
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.338-342
    • /
    • 2017
  • In this paper, evaluation method of structural integrity of cylindrical composite lattice structures was conducted. A finite element analysis was used to evaluate the structural integrity of composite lattice structures. In order to verify the optimal finite element in the evaluation of the structural integrity, finite element models for cylindrical composite lattice structure were generated using beam, shell and solid elements. The results of the finite element analyses with the shell and solid element models showed a good agreement. However, considerable differences were found between the beam element model and the shell and solid models. This occurred because the beam element does not take into account the degradation of the mechanical properties of the non-intersection parts of cylindrical composite lattice structures. It was found that the finite element analysis of evaluation of structural integrity for cylindrical composite lattice structures have to use solid element.

Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells

  • Ahmadi, Isa;Najafi, Mahsa
    • Steel and Composite Structures
    • /
    • v.22 no.5
    • /
    • pp.1193-1214
    • /
    • 2016
  • In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is investigated in the numerical results.

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Behaviour of soil-steel composite bridge with various cover depths under seismic excitation

  • Maleska, Tomasz;Beben, Damian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.747-764
    • /
    • 2022
  • The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.

Synthesis of Almond Shell Biochar-Based Shape-Stable Composite Phase Change Material Using Capric Acid for Thermal Energy Storage (열 에너지 저장용 카프르산을 이용한 아몬드 껍질 바이오차 기반의 안정화 형태 상변이 물질의 성능)

  • Adnin Raihana Jannat;Soumen, Mandal;Lee, Han Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.51-52
    • /
    • 2023
  • A new shape-stable composite phase change material (PCM) have been produced via an easy and simple vacuum impregnation method. The composite PCM have been derived from almond shell biochar (ASB) as supporting material and capric acid (CA) as phase change material. Cost effective waste almond shells (AS) are renewable, eco-friendly, and rich in pores which enhance the possibility of CA impregnation. Therefore, in this study, three different ratios of CA (1:1, 1:2 and 1:3) have been incorporated in ASB to produce shape-stabilized phase change composites (ASCAs). Different techniques such as scanning electron microscopy (SEM), Fourier transform-infrared spectroscope (FT-IR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) have been applied to evaluate the characteristics of ASCAs. The attained composite PCMs have exhibited shape stability with high latent heat storage, that makes it suitable for thermal energy storage applications.

  • PDF

An Experimental Study on the Free Vibration of the Steel and Composite Cylindrical Shells with Simply Supported Edge Conditions (단순지지된 Steel 및 복합재료 원통셸의 진동에 대한 실험적 고찰)

  • 이영신;최명환;길기남;송근영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.334-339
    • /
    • 1998
  • The free vibration analysis of the simply supported steel and composite cylindrical shells are investigated. The natural frequencies and mode shapes of the shell are experimentally obtained by impact testing using an impact hammer and an accelerometer. The effects of the material and geometry on the vibrational characteristics of the shell are examined. The experimental results are compared with the analytical and a finite element results. They showed good agreement with each other.

  • PDF

Static and Dynamic Analysis of Laminated Composite Axisymmetric Shells (적층된 축대칭 복합재료 셸 구조물의 정, 동 구조해석)

  • Lee, Young-Sin;Lee, Hyun
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1203-1214
    • /
    • 1989
  • 본 연구에서는 화이버각도, 경계조건 및 하중형태의 변화에 따라 적층 복합재료원통 셸 구조물의 수치예를 제시하고, NASTRAN수치결과 및 기존 문헌들과 비교하여 구하여진 결과의 타당성을 입증하였다.