• 제목/요약/키워드: Composite oxide

검색결과 699건 처리시간 0.028초

기계화학적방법에 의한 나노구조 WC/Co 복합 분말의 제조에 관한 연구 (A Study On Synthesis of Nanostructured WC/Co composite Powders by Mechanochemical process)

  • 권대환;안인섭;하국현;김병기;김유영
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.167-173
    • /
    • 2002
  • A new approach to produce nanostructured WC/Co composite powders by a mechanochemical process was made to improve the mechanical properties of advanced hardmetals. Homogeneous spherical W-Co salt powders were made by spray drying of aqueous solution from ammonium metatungstate($(NH_4)_6(H_2W_{12}O_{40})\cdo4H_2O$,AMT) and cobalt nitrate hexahydrate (Co(NO$_3$)$_2$.6$H_2O$). spray dried W-Co salt powders were calcined for 1 hr at $700^{\circ}C$ in atmosphere of air. The oxide powder was mixed with carbon black by ball milling and this mixture was heated with various temperatures and times in $H_2$. The $WO_3/CoWO_4$ composite oxide powders were obtained by calcinations at $700^{\circ}C$. The primary particle size of W/Co composite oxide powders by SEM was 100 nm. The reduction/carburization time decreased with increasing temperatures and carbon additions. The average size of WC particle carburized at $800^{\circ}C$ by TEM was smaller than 50 nm.

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.

Nano-graphene oxide damping behavior in polycarbonate coated on GFRP

  • Mohammad, Afzali;Yasser, Rostamiyan;Pooya, Esmaeili
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.823-829
    • /
    • 2022
  • This study considered the experimental parameters (Nano-graphene oxide reinforced polycarbonate, GFRP) under low-velocity impact load and vibration analysis. The effect of nano-graphene oxide (NGO) on a polycarbonate-based composite was studied. Two test procedures were adopted to obtain experimental results, vibration analysis. The mechanical tests were performed on damaged and non-damaged specimens to determine the damaging effect on the composite specimens. After the test was carried out, the effect of NGO was measured and damping factors were ascertained experimentally. 0. 2 wt% NGO was determined as the optimum amount that best affected the Vibration Analysis. The experiments revealed that the composite's damping properties were increased by adding the nanoparticles to 0.25 wt% and decreased slightly for the specimens with the highest nanoparticles content. Cyclic sinus loading was applied at a frequency of 3.5 Hz. This paper study the frequency effect of 3.5khz frequency damage on mechanical results. Found that high frequency will worthlessly affect the fatigue life in NGO/polycarbonate composite. In 3.5 Hz frequency, it was chosen to decrease the heat by frequency. Transmission electron microscopy (TEM) micrographs were used to investigate the distribution of NGO on the polycarbonate matrix and revealed a homogeneous mixture of nano-composites and strong bonding between NGO and the polycarbonate which increased the damping properties and decreased vibration. Finally, experimental modal analysis was conducted after the high-velocity impact damage process to investigate the defect on the NGO polycarbonate composites.

초미분체 NiO/YSZ 고체산화물 복합재료의 제조특성 (Manufacture Properties of the Ultrafine NiO/YSZ Solid Oxide Composite)

  • 최창주;김창석;오무송;김태성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1080-1083
    • /
    • 2001
  • Ultrafine NiO/YSZ composite powders were prepared by using a glycine nitrate process for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with N$_2$absorption, scanning and transmission electron microscopy. The strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$\^$+/. After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal micro-structure very fine Ni parties of 3-5${\mu}$m were distributed uniformly and fine pores around Ni metal particles were formed, thes, leading to an increase of the triple phase boundary among gas Ni and YSZ.

  • PDF

카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구 (Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide)

  • 이진혁;배종우;김정수;윤유미;조남주
    • Elastomers and Composites
    • /
    • 제48권3호
    • /
    • pp.225-231
    • /
    • 2013
  • 본 연구에서는 carboxylated SBR latex와 zinc oxide가 SBS 복합재의 내마모성과 debris 특성 개선에 미치는 영향을 관찰하였다. 실리카를 첨가한 SBS 복합재는 실리카 입자간의 수소 결합에 의한 강한 filler-filler interaction으로 인한 낮은 분산성 때문에 기계적 강도, NBS 내마모성, debris 특성이 전체적으로 감소하는 것으로 나타났다. carboxylated SBR latex를 첨가한 SBS 복합재는 carboxyl group과 실리카의 silanol group간의 결합을 통하여 filler-filler interaction이 감소하고 실리카의 분산성이 증가하기 때문에 기계적 강도, NBS 내마모성, debris 특성이 향상되는 것을 확인 하였다. carboxylated SBR latex와 zinc oxide를 동시에 첨가한 경우, carboxyl group에 의한 실리카의 분산성 향상과 더불어 zinc ion과 carboxyl group간의 ion cluster 형성을 통하여 물성이 크게 증가하였다. Zinc ion과 carboxyl group간의 ion cluster 형성은 $1550{\sim}1650cm^{-1}$의 zinc carboxylate group stretch 피크의 FT-IR 분석 결과로 확인하였다. carboxylated SBR latex와 zinc oxide를 첨가한(SC-4) 복합재의 경우, 인장강도 $156kgf/cm^2$, 신장율 936%, 인열강도 59.4kgf/cm의 우수한 기계적 강도를 나타내었으며, NBS 내마모성은 338%로 가장 우수한 특성을 나타내었다. 또한, 표면 마찰 시에 debris 발생 역시 크게 감소하며, 표면 마찰 저항의 증가로 파도 형태의 마모 특성을 나타내었다.

Post-buckling analysis of geometrically imperfect tapered curved micro-panels made of graphene oxide powder reinforced composite

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, AMS
    • Steel and Composite Structures
    • /
    • 제36권1호
    • /
    • pp.63-74
    • /
    • 2020
  • The present research investigates post-buckling behavior of geometrically imperfect tapered curved micro-panels made of graphene oxide powder (GOP) reinforced composite. Micro-scale effects on the panel structure have been included based on strain gradient elasticity. Micro-panel is considered to be tapered based on thickness variation along longitudinal direction. Weight fractions of uniformly and linearly distributed GOPs are included in material properties based on Halpin-Tsai homogenization scheme considering. Post-buckling curves have been determined based on both perfect and imperfect micro-panel assumptions. It is found that post-buckling curves are varying with the changes of GOPs weight fraction, geometric imperfection, GOP distribution type, variable thickness parameters, panel curvature radius and strain gradient.

Synthesis of Expanded Graphite-Titanium Oxide Composite and its Photocatalytic Performance

  • Oh, Won-Chun;Choi, Jong-Geun;Zhang, Feng-Jun;Go, Yu-Gyoung;Chen, Ming-Liang
    • 한국세라믹학회지
    • /
    • 제47권3호
    • /
    • pp.210-215
    • /
    • 2010
  • In this study, an expanded graphite-titanium oxide composite is developed from expanded graphite (EG) and titanium n-butoxide (TNB). EG is synthesized by chemical intercalation of natural graphite (NG) and rapid expansion at high temperature. TNB is used as the titanium source. The performances of the prepared EG-$TiO_2$ composite are characterized by BET surface area measurements, scan electron microscope (SEM), X-ray diffraction patterns (XRD) and energy dispersive X-ray analysis (EDX). The catalytic activities of the EG-$TiO_2$ composite are investigated by analysis of the degradation of methylene blue (MB) in aqueous solution under irradiation of UV light. Compared with the pristine $TiO_2$ and activity carbon-$TiO_2$ (AC-$TiO_2$) composite, the EG-$TiO_2$ composite shows very high efficiency against MB solution, and the EG could improve the photocatalytic effect of $TiO_2$ in the MB degradation reaction under the irradiation of UV light.

Fabrication and Characterization of Composite LSCF-Ag Cathode for Solid Oxide Fuel Cells using Electron Beam Irradiation Process

  • Kang, Hyun Suk;Jung, Yung-Min;Song, Rak-Hyun;Peck, Dong-Hyun;Park, ChangMoon;Lee, Byung Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권10호
    • /
    • pp.2969-2973
    • /
    • 2014
  • A new process to fabricate a composite LSCF-Ag cathode material for SOFCs by electron beam (e-beam) irradiation process has been suggested for operation under intermediate temperature range of $600-700^{\circ}C$. A composite LSCF-Ag cathode with uniformly coated Ag nanoparticles on the surface of the LSCF material was prepared by a facile e-beam irradiation method at room temperature. The morphology of the composite LSCF-Ag material was analyzed using a TEM, FE-SEM, and EDS. The prepared composite LSCF-Ag material can play a significant role in increasing the electro-catalytic activities and reducing the operating temperature of SOFCs. The performance of a tubular single cell prepared using the composite LSCF-Ag cathode, YSZ electrolyte and a Ni/YSZ anode was evaluated at reduced operating temperature of $600-700^{\circ}C$. The micro-structure and chemical composition of the single cell were investigated using a FE-SEM and EDS.

고체산화물 연료전지의 양극재료용 초미분체 NiO/YSZ 복합체 재료합성 연구 (Synthesis of Ultrafine NiO/YSZ Composite Powder for Anode Material of Solid Oxide Fuel Cells)

  • 최창주;김태성;황종선;김선재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 1999
  • Ultrafine NiO/YSZ (Yttria-Stabilized Zirconic) composite powders were prepared by using a glycine nitrate process (GNP) for anode material of solid oxide fuel cells. The specific surface areas of synthesized NiO/YSZ composite powders were examined with controlling pH of a precursor solution and the content of glycine. The binding of glycine with metal ions occurring in the precursor solution was analyzed by using FTIR. The characteristics of synthesized composite powders were examined with X-ray diffractometer, a BET method with $N_2$ absorption, scanning and transmission electron microscopies. Strongly acid precursor solution increased the specific surface area of the synthesized composite powders. This is suggested to be caused by the increased binding of metal ions and glycine under a strong acid solution of pH=0.5 that lets glycine consist of mainly the amine group of NH$_3$$^{+}$ After sintering and reducing treatment of NiO/YSZ composite powders synthesized by GNP, the Ni/YSZ pellet showed ideal microstructure very fine Ni Particles of 3-5${\mu}{\textrm}{m}$ were distributed uniformly and fine pores around Ni metal particles were formed, thus, leading to an increase of the triple phase boundary among gas, Ni and YSZ.Z.

  • PDF

열 처리를 통한 그래핀/폴리벤족사진 전도성 복합 박막 제조 (Preparation of Graphene/Polybenzoxazine Conductive Composite Thin Film through Thermal Treatment)

  • 고영수;차지정;임진형
    • 폴리머
    • /
    • 제37권4호
    • /
    • pp.513-517
    • /
    • 2013
  • 고내열성 고분자인 폴리벤족사진(PBZ)과 전도성 그래핀을 혼성화시켜 새로운 전도성 복합박막을 제조하는 연구를 처음으로 수행하였다. 단순한 열처리 공정에 의해 동시에 그래핀 옥사이드와 벤족사진 단량체를 환원 및 경화를 시켜 기계적/전기적 특성이 크게 향상된 그래핀/PBZ 복합 박막을 제조하였다. 그래핀/PBZ 복합 박막의 화학/결정 구조 및 형태학적 미세구조 분석으로부터 약 3 wt%의 그래핀이 복합 박막에 들어가더라도 그래핀이 비교적 균일하게 분산된다는 것을 알 수 있었다. 본 연구를 통하여 PBZ박막의 기계적 물성 향상과 동시에 도전성을 부여하는 효과적인 경로를 제공할 수 있었다.