• Title/Summary/Keyword: Composite of FRP-concrete

Search Result 235, Processing Time 0.029 seconds

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

A Study on the Behavior Characteristics of a New-Type FRP-Concrete Composite Deck (신개념 FRP-콘크리트 합성 바닥판의 거동 특성 고찰)

  • Cho Keunhee;Chin Won Jong;Kim Sung Tae;Cho Jeong-Rae;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.746-749
    • /
    • 2004
  • A new-type of FRP-concrete composite bridge deck system is proposed and its behaviors are experimentally studied. The new-typedeck consists of FRP as a permanent form and main tension resisting member and concrete as a compression resisting member. A suitable bonding method such as silica coating is applied to the interface between FRP and concrete to ensure composite behavior. The proposed deck system uses the box-shape FRP member, while a typical FRP-concrete composite deck uses the I-shape FRP member. Theproposed deck system has inherent advantages of a FRP-concrete composite deck like corrosion free and easy construction. The new-type deck shows the equal performances compared to a previous one, and has the advantage of reducing self-weight. In this study, the static tests on 3-span FRP-concrete decks in full scale are carried out, so that load-displacement relation, stress distribution, failure mode and design criteria are analyzed. The test results show that the deflection design criterion (L/800, L: span length) is satisfied at the service load state. No concrete tensile crack occurs in the negative moment region above the main girder, regardless of no tensile reinforcement at upper concrete portion.

  • PDF

Application of FRP-Concrete Composite Deck to Cable Stayed Bridge (FRP-콘크리트 합성 바닥판의 사장교 적용)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.217-220
    • /
    • 2008
  • A modified FRP-concrete composite deck applicable to cable stayed bridge with long girder-to-girder span is proposed, and its design and economical efficiency are presented. The existing FRP-concrete composite deck has low section stiffness due to adoption of GFRP panel with low elastic modulus, which arrives at difficulty in meet of serviceability limit such as deck deflection. So a new-type FRP-concrete composite deck, named precast FRP-concrete deck, is developed by extensioning concrete at the both ends of FRP-concrete composite deck, which brings the effect of reduction of net span length of deck. Compared to the existing FRP-concrete composite deck this modified deck has the advantage of increasing span length but slightly increases self weight. For this type of deck the section optimization is carried out for the cases of simply supported on girder and composite to girder. The optimized deck was applied to cable stayed bridge with a center span length of 540m, and as a result it is verified that PFC deck can be applied efficiently to cable stayed bridge due to reduction of quantity of upper structure.

  • PDF

Fatigue Performance of Precast FRP-Concrete Composite Deck with Long Span (장지간 프리캐스트 FRP-콘크리트 합성 바닥판의 피로 성능)

  • Cho, Keun-Hee;Park, Sung-Yong;Kim, Sung-Tae;Kim, Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.45-46
    • /
    • 2010
  • Fatigue performance of a precast FRP-concrete composite deck with long span economically applicable to a cable-stayed bridge was evaluated. From the experiment, it is verified that the precast FRP-concrete composite deck has sufficient fatigue performance.

  • PDF

Characteristics of FRP-Concrete Composite Decks under Negative Flexure (FRP-콘크리트 합성 바닥판의 부모멘트부 거동 특성)

  • Kim, Sung-Tae;Cho, Keun-Hee;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Shin, Yung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.86-89
    • /
    • 2006
  • The flexural performance of FRP-concrete composite deck in the connection between decks is evaluated. FRP-concrete composite deck, an innovative system is composed of concrete in the top and FRP panel in the bottom. The experiments are carried out on specimens with different details, such as FRP module and reinforcement of FRP re-bars. As a result, we verify that the transverse connections between our FRP-concrete composite decks with presented details secure enough safety and serviceability.

  • PDF

A Study on the Section Design of FRP-Concrete Composite Slabs Considering Failure Behaviors (파괴 거동을 고려한 FRP-콘크리트 합성 바닥판의 단면 설계에 관한 연구)

  • 조근희;김병석;이영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.641-646
    • /
    • 2002
  • FRP-concrete composite slab is consisted of brittle materials and then shows brittle failure mechanism. This study suggests a new design approach that FRP-concrete composite slab leads to ductile failure, and investigates their failure behaviors for two types of section by numerical analysis. Box-type section is higher than I-type section in load capacity to required FRP quantity. Each section was designed so that the strain of FRP plate is 50% to its ultimate strain on initiation of concrete crushing, and it is verified that displacement ductility is more than two. Ductility capacity can be improved by reducing the strain of FRP on initiation of concrete crushing, but as the strain of FRP is reduced load capacity to required FRP quantity is also reduced. Therefore section optimization study is needed considering safety and economical efficiency.

  • PDF

Behavior Characteristics of FRP-Concrete Composite Beam using FRC (FRC를 적용한 FRP-콘크리트 합성보의 거동특성)

  • Cho Jeong-Rae;Cho Keunhee;Kim Byung-Suk;Chin Won Jong;Kim Sung Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.742-745
    • /
    • 2004
  • The FRP-concrete composite deck system has advantages of corrosion free and easy construction. The system is, however, comprised of two brittle materials, so that it suffers from inherent disadvantage of lack of ductility. In this study, some conceptual design is presented for preventing the brittle failure of FRP-concrete composite deck at ultimate load level. 4-point bending tests are performed for FRP-concrete composite beams using FRC(Fiber Reinforced Concrete). The specimens use the box-shape FRP member in the lower portion. Four types of concrete with different compressive strengths and ductilities including normal mortar and 3 FRCs are placed in the upper portion. Typical failure mode in the test is identified; Concrete compressive failure occurs first at the maximum moment region, and the interfacial debonding between FRP and concrete member proceeds. Finally, the tensile rupture of FRP member occurs. The specimen using FRC with the high compressive ductility of concrete fails with less brittle manner than other specimens. The reason is that the ductility from the concrete in compression prevents the sudden loss of load-carrying capacity after compressive concrete failure.

  • PDF

Analysis of Composite Behavior between FRP-Concrete Composite Deck and Girder (FRP-콘크리트 합성 바닥판과 거더와의 합성 거동 분석)

  • Cho Keun Hee;Cho Jeong-Rae;Kim Sung Tae;Chin Won Jong;Kim Byung-Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.379-382
    • /
    • 2005
  • Composite behavior between FRP-concrete composite deck and girder is investigated by numerical analysis and parametric experiments. Compared to reinforced concrete deck, the weight of FRP-concrete composite deck is about 64$\%$ but the performance of composition is 90$\%$. Therefore the FRP-concrete composite deck has the advantage of longitudinal section stiffness increase in case of composition to the girder. The experiment, according to the variation of stud diameter, stud length and bedding thickness, is carried out. As a result, the static failure strength increases as stud diameter and length increase and bedding thickness decreases.

  • PDF

Development of Hybrid FRP-Concrete Composite Pile Connection (하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

Study on mechanical behavioral characteristics of FRP-concrete composit member considering interface element between FRP and concrete (계면특성을 고려한 FRP와 콘크리트 복합부재의 역학적 거동특성 분석 연구)

  • Lee, Gyu-Phil;Park, Young-Taek;Hwang, Jae-Hong;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.6
    • /
    • pp.595-606
    • /
    • 2012
  • Utilization of fiber reinforced polymer(FRP) material has been increased to solve construction material problems such as corrosion, etc. However, there are still many problems in using a linear-shaped FRP material for a tunnel structure with curved section. In this study, the loading tests were performed on the curved FRP-concrete composite material to evaluate its behavior as tunnel support. These tests were based on the result from preliminary numerical analysis on FRP-concrete composite material. Also, additional numerical analysis considering interface characteristics between FRP and cement-concrete was conducted to compare the result of loading test on FRP-concrete composite material. From the results of the loading test and numerical analysis, the analysis method suggested from this study is reasonable to evaluate the mechanical behavior of FRP-concrete composite material.