Browse > Article
http://dx.doi.org/10.12989/acc.2020.9.2.125

Behaviour of FRP composite columns: Review and analysis of the section forms  

Rong, Chong (State Key Laboratory of Green Building in Western China of Xian University of Architecture & Technology)
Shi, Qingxuan (State Key Laboratory of Green Building in Western China of Xian University of Architecture & Technology)
Zhao, Hongchao (College of Civil Engineering, Xinjiang University)
Publication Information
Advances in concrete construction / v.9, no.2, 2020 , pp. 125-137 More about this Journal
Abstract
As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.
Keywords
FRP-confined concrete; the hybrid FRP-confined concrete-steel composite columns; the mechanical performance; the interaction relationship;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Dong, C.X., Kwan, A. and Ho, J.C.M. (2015), "Effects of confining stiffness and rupture strain on performance of FRP confined concrete", Eng. Struct., 97, 1-14. https://doi.org/10.1016/j.engstruct.2015.03.037.   DOI
2 Elgawady, M. and Abdelkarim, O. (2014), "Behavior of hollow-core FRP-concrete-steel columns subjected to cyclic axial compression", Tech Report, Missouri University of Science and Technology, Center for Transportation Infrastructure and Safety.
3 Esfandiari, S. and Esfandiari, J. (2017), "Simulation of the behaviour of RC columns strengthen with CFRP under rapid loading", Adv. Concrete Constr., 4(4), 319-332. http://dx.doi.org/10.12989/acc.2017.4.4.319.   DOI
4 Fahmy, M.F.M. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. B Eng., 41(3), 199-213. https://doi.org/10.1016/j.compositesb.2009.12.001.   DOI
5 Fanggi, B.A.L. and Ozbakkaloglu, T. (2013), "Compressive behavior of aramid FRP-HSC-steel double-skin tubular columns", Constr. Build. Mater., 48(19), 554-565. https://doi.org/10.1016/j.conbuildmat.2013.07.029.   DOI
6 Fanggi, B.A.L. and Ozbakkaloglu, T. (2015), "Square FRP-HSC-steel composite columns: Behavior under axial compression", Eng. Struct., 92, 156-171. https://doi.org/10.1016/j.engstruct.2015.03.005.   DOI
7 Hosseinpour, F. and Abdelnaby, A.E. (2015), "Statistical evaluation of the monotonic models for FRP confined concrete prisms", Adv. Concrete Constr., 3(3), 161-185. http://dx.doi.org/10.12989/acc.2015.3.3.161.   DOI
8 Hu, Y.M. (2011), "Behaviour and modelling of FRP-confined hollow and concrete-filled steel tubular columns", Ph.D. Dissertation, Hong Kong Polytechnic University, Hong Kong.
9 Hu, Y.M., Yu, T. and Teng, J.G. (2016), "FRP-confined circular concrete-filled thin steel tubes under axial compression", J. Compos. Constr., 15(5), 850-860. http://hdl.handle.net/10397/23938.   DOI
10 Abdel-Kareem, A.H. (2014), "Shear strengthening of reinforced concrete beams with rectangular web openings by FRP composites". Adv. Concrete Constr., 2(4), 281-300. http://dx.doi.org/10.12989/acc.2014.2.4.281.   DOI
11 Abdelkarim, O.I. and ElGawady, M. (2016), "Behavior of hollow FRP-concrete-steel columns under static cyclic axial compressive loading". Eng. Struct., 123, 77-88. https://doi.org/10.1016/j.engstruct.2016.05.031.   DOI
12 Afifi, M., Mohamed, H.M. and Benmokrane, B. (2015), "Theoretical stress-strain model for circular concrete columns confined by gfrp spirals and hoops". Eng. Struct., 102, 202-213. https://doi.org/10.1016/j.engstruct.2015.08.020.   DOI
13 Bouchelaghem, H., Abderrezak, B. and Scarpa, F. (2011), "Compressive behaviour of concrete cylindrical FRP-confined columns subjected to a new sequential loading technique", Compos. B Eng., 42(7), 1987-1993. https://doi.org/10.1016/j.compositesb.2011.05.045.   DOI
14 Campione, G. and Minafò, G. (2010), "Compressive behavior of short high-strength concrete columns", Eng. Struct., 32(9), 2755-2766. https://doi.org/10.1016/j.engstruct.2010.04.045.   DOI
15 Candappa, D.C., Sanjayan, J.G. and Setunge, S. (2001), "Complete triaxial stress-strain curves of high-strength concrete", J. Mater. Civil Eng., 13(3), 209-215. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:3(209).   DOI
16 Karimi, K., Tait, M. and El-Dakhakhni, W. (2011b), "Influence of slenderness on the behavior of a FRP-encased steel-concrete composite column", J. Compos. Constr., 16(1), 100-109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000235.   DOI
17 Huang, L., Zhang, S.S., Yu, T. and Wang, Z.Y. (2016), "Concrete-encased steel columns confined with large rupture strain FRP composites: axial compression tests.", Proceedings of the 24th Australian Conference on the Mechanics of Structures and Materials, Perth, Australia, December.
18 Idris, Y. and Ozbakkaloglu, T. (2015), "Flexural behavior of FRP-HSC-steel double skin tubular beams under reversed-cyclic loading", Thin Wall. Struct., 87, 89-101. https://doi.org/10.1016/j.tws.2014.11.003.   DOI
19 Karimi, K., Tait, M. and El-Dakhakhni, W. (2011a), "Testing and modeling of a novel FRP-encased steel-concrete composite column", Compos. Struct., 93(5), 1463-1473. https://doi.org/10.1016/j.compstruct.2010.11.017.   DOI
20 Karimi, K., Tait, M. and El-Dakhakhni, W. (2011c), "Analytical modeling and axial load design of a novel FRP-encased steel-concrete composite column for various slenderness ratios", Eng. Struct., 46, 526-534. https://doi.org/10.1016/j.engstruct.2012.08.016.   DOI
21 Lam, L. and Teng, J.G. (2004), "Ultimate condition of FRP-confined concrete", Constr. Build. Mater., 17, 6-7. https://doi.org/10.1061/(ASCE)1090-0268(2004)8:6(539).
22 Lam, L., Teng, J.G., Cheung, C.H. and Xiao, Y. (2006), "FRP-confined concrete under axial cyclic compression", Cement Concrete Compos., 28(10), 949-958. https://doi.org/10.1016/j.cemconcomp.2006.07.007.   DOI
23 Ozbakkaloglu, T. (2013), "Compressive behavior of concrete-filled FRP tube columns: assessment of critical column parameters", Eng. Struct., 51, 188-199. https://doi.org/10.1016/j.engstruct.2013.01.017.   DOI
24 Huang, L., Yu, T., Zhang, S.S. and Wang, Z.Y. (2017), "FRP-confined concrete-encased cross-shaped steel columns: concept and behaviour", Eng. Struct., 152, 348-358. https://doi.org/10.1016/j.engstruct.2017.09.011.   DOI
25 Lim, J.C. and Ozbakkaloglu, T. (2015a), "Influence of concrete age on stress-strain behavior of FRP-confined normal- and high-strength concrete", Constr. Build. Mater., 82(4), 61-70. https://doi.org/10.1016/j.conbuildmat.2015.02.020.   DOI
26 Lim, J.C. and Ozbakkaloglu, T. (2015b), "Design model for FRP-confined normal- and high-strength concrete square and rectangular columns", Mag. Concrete Res., 66(20), 1020-1035. https://doi.org/10.1680/macr.14.00059.   DOI
27 Lo, S.H., Kwan, A., Ouyang, Y. and Ho, J.C.M. (2015), "Finite element analysis of axially loaded FRP-confined rectangular concrete columns", Eng. Struct., 100, 253-263. https://doi.org/10.1016/j.engstruct.2015.06.010.   DOI
28 Mao, X.Y. and Xiao, Y. (2006), "Seismic behavior of confined square CFT columns", Eng. Struct., 28(10), 1378-1386. https://doi.org/10.1016/j.engstruct.2006.01.015.   DOI
29 Ozbakkaloglu, T. and Fanggi, B.L. (2014), "Axial compressive behavior of FRP-concrete-steel double-skin tubular columns made of normal- and high-strength concrete", J. Compos. Constr., 18(1), 04013027. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000401.   DOI
30 Ozbakkaloglu, T. and Idris, Y. (2014), "Seismic behavior of FRP-high-strength concrete-steel double-skin tubular columns", J. Struct. Eng., 140(6), 04014019. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000981.   DOI
31 Realfonzo, R. and Napoli, A. (2011), "Concrete confined by FRP systems: confinement efficiency and design strength models", Compos. B Eng., 42(4), 736-755. https://doi.org/10.1016/j.compositesb.2011.01.028.   DOI
32 Ozbakkaloglu, T. and Lim, J.C. (2013), "Axial compressive behavior of FRP-confined concrete: experimental test database and a new design-oriented model", Compos. B Eng., 55(12), 607-634. https://doi.org/10.1016/j.compositesb.2013.07.025.   DOI
33 Park, J.W., Hong, Y.K. and Choi, S.M. (2010), "Behaviors of concrete filled square steel tubes confined by carbon fiber sheets (CFS) under compression and cyclic loads", Steel Compos. Struct., 10(2), 187-205. http://dx.doi.org/10.12989/scs.2010.10.2.187.   DOI
34 Peng, K.D. (2017), "Compression tests on square hybird FRP-concrete-steel tubular columns with a rib-stiffened steel inner tube.", Proceedings of the 6th Asia-Pacific Conference on FRP in Structures, Singapore, Singapore, July.
35 Piekarczyk, J., Piekarczyk, W. and Blazewicz, S. (2011), "Compression strength of concrete cylinders reinforced with carbon fiber laminate", Constr. Build. Mater., 25(5), 2365-2369. https://doi.org/10.1016/j.conbuildmat.2010.11.035.   DOI
36 Qasrawi, Y., Heffernan, P.J. and Fam, A. (2014), "Performance of concrete-filled FRP tubes under field close-in blast loading", J. Compos. Constr., 19(4), 04014067. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000502.   DOI
37 Saleem, S., Hussain, Q. and Pimanmas, A. (2017), "Compressive behavior of PET FRP-Confined circular, square, and rectangular concrete columns", J. Compos. Constr., 21(3), 04016097. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000754.   DOI
38 Tamimi, A.A., Abed, F. and Al-Rahmani, A. (2014), "Effects of harsh environmental exposures on the bond capacity between concrete and GFRP reinforcing bars". Adv. Concrete Constr., 2(1), 1-11. http://dx.doi.org/10.12989/acc.2014.2.1.001.   DOI
39 Shan, J.H., Chen, R., Zhang, W.X., Xiao, Y., Yi, W.J. and Lu, F.Y. (2007), "Behavior of concrete filled tubes and confined concrete filled tubes under high speed impact", Adv. Struct. Eng., 10(2), 209-218. https://doi.org/10.1260/136943307780429725.   DOI
40 Sumathi, A. and Arun, V.S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. http://dx.doi.org/10.12989/acc.2017.5.6.625.   DOI
41 Tan, K.H., Bhowmik, T. and Balendra, T. (2013), "Confinement model for FRP-bonded capsule-shaped concrete columns", Eng. Struct., 51(2), 51-59. https://doi.org/10.1016/j.engstruct.2012.12.039.   DOI
42 Tao, Z., Han, L.H. and Zhuang, J.P. (2007), "Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns", Adv. Struct. Eng., 10(1), 37-46. https://doi.org/10.1260/136943307780150814.   DOI
43 Teng, J.G., Huang, Y.L., Lam, L. and Ye, L.P. (2007), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).   DOI
44 Teng, J.G., Yu, T. and Wong, Y.L. (2004), "Hybrid FRP-concrete-steel double-skin tubular columns: Stub column tests.", Proceedings of the Second International Conference on Steel & Composite Structures, Seoul, Korea, July.
45 Teng, J.G., Yu, T. and Wong, Y.L. (2004), "Theoretical model for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 11(2), 201-210. https://doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201).   DOI
46 Xiao, Y., He, W. and Choi, K.K. (2005), "Confined concrete-filled tubular columns", J. Struct. Eng., 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488).   DOI
47 Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete", Compos. B Eng., 50(7), 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017.   DOI
48 Wong, Y.L., Yu, T., Teng, J.G. and Dong, S.L. (2008), "Behavior of FRP-confined concrete in annular section columns", Compos. B Eng., 39(3), 451-466. https://doi.org/10.1016/j.compositesb.2007.04.001.   DOI
49 Wu, Y.F. and Wei, Y.Y. (2010), "Effect of cross-sectional aspect ratio on the strength of CFRP-confined rectangular concrete columns", Eng. Struct., 32(1), 32-45. https://doi.org/10.1016/j.engstruct.2009.08.012.   DOI
50 Xiao, Y. (2004), "Applications of FRP composites in concrete columns", Adv. Struct. Eng., 7(4), 335-343. https://doi.org/10.1260/1369433041653552.   DOI
51 Xie, T. and Ozbakkaloglu, T. (2015), "Behavior of steel fiber-reinforced high-strength concrete-filled FRP tube columns under axial compression", Eng. Struct., 90, 158-171. https://doi.org/10.1016/j.engstruct.2015.02.020.   DOI
52 Youssf, O., ElGawady, M. and Mills, J.E. (2016), "Static cyclic behaviour of FRP-confined crumb rubber concrete columns", Eng. Struct., 113, 371-387. https://doi.org/10.1016/j.engstruct.2016.01.033.   DOI
53 Yu, T. and Teng, J.G. (2013), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns with a square outer tube and a circular inner tube subjected to axial compression", J. Compos. Constr., 17(2), 271-279. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000331.   DOI
54 Yu, T., Hu, Y.M. and Teng, J.G. (2016a), "Cyclic lateral response of FRP-confined circular concrete-filled steel tubular columns", J. Constr. Steel Res., 124, 12-22. https://doi.org/10.1016/j.jcsr.2016.05.006.   DOI
55 Yu, T. Zhang. B., Cao, Y.B. and Teng, J.G. (2012), "Behavior of hybrid FRP-concrete-steel double-skin tubular columns subjected to cyclic axial compression", Thin Wall. Struct., 61(6), 196-203. https://doi.org/10.1016/j.tws.2012.06.003.   DOI
56 Yu, T., Chan, C., The, L. and Teng, J.G. (2017), "Hybrid FRP-concrete-steel multitube concrete columns: concept and behavior", J. Compos. Constr., 21(6), 04017044. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000826.   DOI
57 Yu, T., Hu, Y.M. and Teng, J.G. (2014), "FRP-confined circular concrete-filled steel tubular columns under cyclic axial compression", J. Constr. Steel Res., 94, 33-48. https://doi.org/10.1016/j.jcsr.2013.11.003.   DOI
58 Zhang, D.J. Wang. Y.F. and Ma, Y.S. (2010), "Compressive behaviour of FRP-confined square concrete columns after creep", Eng. Struct., 32(8), 1957-1963. https://doi.org/10.1016/j.engstruct.2010.02.023.   DOI
59 Yu, T., Lin, G. and Zhang, S.S. (2016b), "Compressive behavior of FRP-confined concrete-encased steel columns", Compos. Struct., 154, 493-506. https://doi.org/10.1016/j.compstruct.2016.07.027.   DOI
60 Zakaib, S. and Fam, A. (2012), "Flexural performance and moment connection of concrete-filled GFRP tube-encased steel I-sections", J. Compos. Constr., 16(5), 604-613. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000288.   DOI
61 Zhou, Y., Liu. X., Xing, F., Li, D., Wang, Y. and Sui, L. (2017), "Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete", Constr. Build. Mater., 139, 52-63. https://doi.org/10.1016/j.conbuildmat.2016.12.154.   DOI