• Title/Summary/Keyword: Composite number

Search Result 1,293, Processing Time 0.021 seconds

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.

Factors Affecting the Depressive Mood Experience in University Students by Gender in COVID-19 Pandemic Situation: Using Community Health Survey Data for 2020 (코로나19 팬데믹 상황에서 성별에 따른 대학생의 우울감 경험에 영향을 미치는 요인: 2020 지역사회건강조사 자료 활용)

  • Kim, Kyung Sook
    • Health Policy and Management
    • /
    • v.31 no.3
    • /
    • pp.374-383
    • /
    • 2021
  • Background: The purpose of this study is to identify the factors affecting the depressive mood experience in university students by gender. Methods: This study is a descriptive survey that conducted a secondary analysis using data from the 2020 Community Health Survey, which is conducted annually in Korea. The study targets 8,928 college students, 4,682 male students and 4,246 female students. Data analysis was conducted after creating a composite sample plan file that reflected layering variables, colony variables, and weights. Results: Factors affecting the depressive mood experience of both males and females were household income, smoking, subjective stress levels, changes in drinking and smoking, and the number of encounters caused by coronavirus disease 2019 (COVID-19). Factors influencing the depressive mood experience of females were the presence of breakfast, changes in physical activity due to COVID-19, and the presence of helpers in self-quarantine due to COVID-19 (p<0.05). Conclusion: Psychological counseling programs should be promoted to actively utilize mental health in those in their 20s and 30s. Universities also need to detect depressed students early through screening and perform timely and appropriate interventions.

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials (탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구)

  • Kim, Jeong-Keun;Choi, Sun-Ho;Go, Sun-Ho;Kwac, Lee-Ku;Kang, Sung-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.59-67
    • /
    • 2020
  • Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Seismic evaluation of self-centering energy dissipating braces using fragility curves

  • Kharrazi, Hossein;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.679-693
    • /
    • 2020
  • This paper investigates the seismic response of buildings equipped with Self-Centering Energy Dissipating (SCED) braces. Two-dimensional models of 3, 6, 12 and 16-story SCED buildings considering both material and geometric nonlinearities are investigated by carrying out pushover and nonlinear time-history analyses. The response indicators of the buildings are studied for weight-scaled ground motions to represent the Design Basis Earthquake (DBE) level and the Maximum Considered Earthquake (MCE) event. The fragility curves of the buildings for two Immediate Occupancy (IO) and Life Safety (LS) performance levels are developed using Incremental Dynamic Analysis (IDA). Results of the nonlinear response history analyses indicate that the maximum inter-story drift occurs at the taller buildings. The mean peak inter-story drift is less than 2% in both hazard levels. High floor acceleration peaks are observed in all the SCED frames regardless of the building height. The overall ductility and ductility demand increase when the number of stories reduces. The results also showed the residual displacement is negligible for all of case study buildings. The 3 and 6-story buildings exhibit desirable performance in IO and LS performance levels according to fragility curves results, while 12 and 16-story frames show poor performance especially in IO level. The results indicated the SCED braces performance is generally better in lower-rise buildings.

The Relationships between Abnormal Return, Trading Volume Activity and Trading Frequency Activity during the COVID-19 in Indonesia

  • SAPUTRA G, Enrico Fernanda;PULUNGAN, Nur Aisyah Febrianti;SUBIYANTO, Bambang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.2
    • /
    • pp.737-745
    • /
    • 2021
  • This study aims to determine whether there are differences in the average abnormal return, trading volume activity, and trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of the coronavirus (COVID-19) in Indonesia. The sample was selected using a purposive sampling method and collected as many as nine pharmaceutical companies listed on the Indonesia Stock Exchange during 2019-2020. The data used in this study were secondary data in the form of daily data on stock closing prices, Composite Stock Price Index (IHSG), stock volume trading, number of shares outstanding, and stock trading frequency. This study was an event study with an observation period of 14 days, namely seven days before and seven days after the announcement of the coronavirus's first positive case in Indonesia. Hypothesis testing employed the paired sample t-test method. Based on the results, it was found that there was no difference in the average abnormal return of pharmaceutical stocks before and after the announcement of the first case of COVID-19. However, there was a difference in the average trading volume activity and the average trading frequency activity in pharmaceutical stocks before and after the announcement of the first case of COVID-19.

Monitoring and control of multiple fraction laws with ring based composite structure

  • Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad Nawaz;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.2
    • /
    • pp.129-138
    • /
    • 2021
  • In present article, utilizing the Love shell theory with volume fraction laws for the cylindrical shells vibrations provides a governing equation for the distribution of material composition of material. Isotopic materials are the constituents of these rings. The position of a ring support has been taken along the radial direction. The Rayleigh-Ritz method with three different fraction laws gives birth to the shell frequency equation. Moreover, the effect of height- and length-to-radius ratio and angular speed is investigated. The results are depicted for circumferential wave number, length- and height-radius ratios with three laws. It is found that the backward and forward frequencies of exponential fraction law are sandwich between polynomial and trigonometric laws. It is examined that the backward and forward frequencies increase and decrease on increasing the ratio of height- and length-to-radius ratio. As the position of ring is enhanced for clamped simply supported and simply supported-simply supported boundary conditions, the frequencies go up. At mid-point, all the frequencies are higher and after that the frequencies decreases. The frequencies are same at initial and final stage and rust itself a bell shape. The shell is stabilized by ring supports to increase the stiffness and strength. Comparison is made for non-rotating and rotating cylindrical shell for the efficiency of the model. The results generated by computer software MATLAB.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Effects of Gym Ball Stabilization Exercises on the Physical Functions of Elementary School Baseball Players

  • Kim, Se-Hun;Park, Jea-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • Purpose: This study examined the effects of gym ball stabilization exercises on the physical functions of elementary school baseball players. Methods: The elementary school baseball players were assigned to an experimental group (n=21). The group performed gym ball stabilization exercises and the changes in the physical functions were measured using the visual response speed test, functional movements, physical balance ability, and pulmonary function. Results: The results of the visual response speed test showed changes in the time response speed. There was a significant change in the number of touches in 15 seconds in the upper arms and left and right legs (p<0.05) after 10 weeks. Also, there was a significant change in the reaction times of the left and right legs after 10 weeks (p<0.05). Further, there were significant differences in functional movements involving rotational stability and the total functional scores after 10 weeks (p<0.05). The player's body balance ability showed a significant difference after 10 weeks in the posterior-lateral and posterior-medial composite scores of the left and right legs (p<0.05). There was a significant change in the forced lung capacity and forced expiratory volume in 1 second after 10 weeks (p<0.05). Conclusion: These results show that the gym ball stabilization exercises effectively improved the visual response speed and functional movements, balance, and vital capacity of elementary school baseball players.

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.117-127
    • /
    • 2022
  • This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Seismic demand assessment of semi-rigid steel frames at different performance points

  • Sharma, Vijay;Shrimali, Mahendra K.;Bharti, Shiv D.;Datta, Tushar K.
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.713-730
    • /
    • 2021
  • The seismic performance of rigid steel frames is widely investigated, but that of semi-rigid (SR) steel frames are not studied extensively, especially for near-field earthquakes. In this paper, the performances of five and ten-story steel SR frames having different degrees of semi-rigidity are evaluated at four performance points in the four different deformation states, namely, the elastic, elasto-plastic, plastic, and near collapse states. The performances of the SR frames are measured by the response parameters including the maximum values of the top floor displacement, base shear, inter-story drift ratio, number of plastic hinges, and SRSS of plastic hinge rotations. These response parameters are obtained by the capacity spectrum method (CSM) using pushover analysis. The validity of the response parameters determined by the CSM is evaluated by the results of the nonlinear time history analysis (NLTHA) for both near and far-field earthquakes at different PGA levels, which are consistent with the performance points. Results of the study show that the plastic hinges of SR frame significantly increase in the range of plastic to near-collapse states for both near and far-field earthquakes. The effect of the degree of semi-rigidity is pronounced only at higher degrees of semi-rigidity. The predictions of the CSM are fairly well in comparison to the NLTHA.