• 제목/요약/키워드: Composite nanoparticles

검색결과 327건 처리시간 0.021초

Application of computer methods for the effects of nanoparticles on the frequency of the concrete beams experimentally and numerically

  • Chencheng Song;Junfeng Shi;Ibrahim Albaijan;H. Elhosiny Ali;Amir Behshad
    • Steel and Composite Structures
    • /
    • 제48권1호
    • /
    • pp.19-25
    • /
    • 2023
  • Due to high application of concrete structures in construction industry, however, the quality improvement is essential. One of the new ways for this purpose is adding the nanoparticles to the concrete. In this work, vibration analysis of concrete beams reinforced by graphene oxide (GO) nanoparticles based on mathematical model has been investigated. For the accuracy of the presented model, the experimental study is done for comparing the compressive strength. Since the nanoparticles can not be solved in water without any specific process, at the first, GO nanoparticles should be dispersed in water by using shaker, magnetic striker, ultrasonic devices and finally mechanical mixer. For modelling of the strucuture, sinusoidal shear deformation beam theory (SSDBT) is utilized. Mori-Tanak model model is utilized for obtaining the effective properties of the beam including agglomeration influences. Utilizing the energy method and Hamilton's principal, the motion equations are calculated. The frequency of the concrete beam is obtanied by analytical method. Three samples with 0.02% GO nanoparticles are built and its compressive strength is compared which shows a good accuracy with maximum 1.29% difference with mathematical model and other papers. The aim of this work from the theoretical study is investigating the effects of nanoparticles volume percentage and agglomeration, length and thickness of the beam on the frequency of the structure. The results show that the with enhancing the GO nanoparticles, the frequency is increased. For example, with enhancing the volume percent of GO nanoparticles from zero to 0.08%, the compressive strength is increased 48.91%. and 46.83%, respectively for two cases of with and without agglomeration.

Molecular Aligning Properties of a Dielectric Layer of Polymer-Ceramic Nanocomposite for Organic Thin-Film Transistors

  • Kim, Chi-Hwan;Kim, Sung-Jin;Yu, Chang-Jae;Lee, Sin-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1200-1203
    • /
    • 2004
  • We investigated the molecular aligning capability of a polymer layer containing ceramic nanoparticles which can be used as a gate insulator of organic thin-film transistors (OTFTs). Because of the enhanced dielectric properties arising from the nanoparticles and molecular aligning properties of the polymer, the composite layer provides excellent mobility characteristics of the OTFTs.

  • PDF

Synthesis and electrochemical analysis of Pt-loaded, polypyrrole-decorated, graphene-composite electrodes

  • Park, Jiyoung;Kim, Seok
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.117-120
    • /
    • 2013
  • In this study, an electro-catalyst of Pt nanoparticles supported by polypyrrole-functionalized graphene (Pt/PPy-reduced graphene oxide [RGO]) is reported. The Pt nanoparticles are deposited on the PPy-RGO composite by chemical reduction of H2PtCl6 using NaBH4. The presence of graphene (RGO) caused higher activity. This might have been due to increased electro-chemically accessible surface areas, increased electronic conductivity, and easier charge-transfer at polymer-electrolyte interfaces, allowing higher dispersion and utilization of the deposited Pt nano-particles. Microstructure, morphology and crystallinity of the synthesized materials were investigated using X-ray diffraction and transmission electron microscopy. The results showed successful deposition of Pt nano-particles, with crystallite size of about 2.7 nm, on the PPy-RGO support film. Catalytic activity for methanol electro-oxidation in fuel cells was investigated using cyclic voltammetry. The fundamental electrochemical test results indicated that the electro-catalytic activity, for methanol oxidation, of the Pt/PPy-RGO combination was much better than for commercial catalyst.

Heat-ray Shielding Property of Nanocomposites of Poly(acrylic acid) Doped with Copper Sulfide

  • Gotoh, Yasuo;Shibata, Kazuaki;Fujimori, Yoshie;Ohkoshi, Yutaka;Nagura, Masanobu
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.71-72
    • /
    • 2003
  • The aim of our study is to prepare nanocomposites consisting polymer/inorganic nanoparticles and investigate their physical properties as a functional material. In this study, a nanocomposite of copper sulfide (CuS) nanoparticles introduced into a poly(acrylic acid) matrix was prepared and the optical absorption property was measured. The composite exhibited strong absorption of both ultraviolet and near-infrared rays, indicating that the composite is applicable to a solar radiation shielding filter. The wavelength of the near infrared absorption was controlled from ca.1000 nm to 1700 nm by heat and acidic solution treatments.

  • PDF

Preparation and characterization of expanded graphite/Ag nanoparticle composites for the improvement of thermal diffusion

  • Hong, Seok Hwan;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.410-415
    • /
    • 2018
  • Expanded graphite (EG)/Ag nanoparticle composites were synthesized by the chemical reduction of Ag ions, followed by the addition of expanded graphite into an Ag reducing solution. The prepared composites showed uniform dispersion of Ag nanoparticles on the surface of expanded graphite and exhibited relatively higher thermal conductivities than those of pure expanded graphite. In the case of 10% Ag content in the composite, the thermal conductivity in the thickness direction was 78% higher than the pure expanded graphite. We suggest that EG/Ag nanoparticle composites are a strong candidate for advanced heat spreading material.

Au/TiO2 core-shell 나노입자의 합성에 있어서 Au 나노입자의 분산특성에 미치는 Mercaptoundecanoic acid (MUA)의 피복 효과 (The Effect of Mercaptoundecanoic Acid (MUA) Coating on Dispersion Property of Au Nanoparticles in Synthesis of Au/TiO2 Core-shell Nanoparticles)

  • 유연태;김병규
    • 한국재료학회지
    • /
    • 제16권12호
    • /
    • pp.754-760
    • /
    • 2006
  • Mercaptoundecanoic acid (MUA) has been used to enhance the dispersity of Au nanoparticles in organic solvent and the affinity between the Au nanoparticles surface and titanium dioxide shell in the synthesis of $Au/TiO_2$ core-shell composite nanoparticles. The dispersity of the MUA-coated Au nanoparticles in ethanol aqueous solution with different concentration of $H_2O$ was investigated by UV-Vis. absorption spectrum and the coating amount of MUA was varied from 0.02 mM to 1.0 mM. The MUA-coated Au nanoparticles were highly dispersed in pure $H_2O$ in the wide range of the coating amount of MUA. On the contrary, the MUAcoated Au nanoparticles showed an enhanced stability in the ethanol/$H_2O$=8/2 mixed solution only when the coating amount of MUA was 0.05 mM, and in the ethanol/$H_2O$=7/3 mixed solution when the coating amount of MUA was in the range from 0.02 mM to 0.17 mM. From this systematic study, it can be inferred that the stability and the dispersibility of Au nanoparticles in organic solvents are highly sensitive towards the amount of MUA coating.

하이퍼써미아 응용을 위한 하이브리드 에어로젤 내 분산된 마그네타이트 나노입자 (Magnetite Nanoparticles Dispersed in Hybrid Aerogel for Hyperthermia Application)

  • 이은희;좌용호;김창열
    • 한국재료학회지
    • /
    • 제22권7호
    • /
    • pp.362-367
    • /
    • 2012
  • Magnetite nanoparticles(NPs) have been the subject of much interest by researchers owing to their potential use as magnetic carriers in drug targeting and as a tumor treatment in cases of hyperthermia. However, magnetite nanoparticles with 10 nm in diameter easily aggregate and thus create large secondary particles. To disperse magnetite nanoparticles, this study proposes the infiltration of magnetite nanoparticles into hybrid silica aerogels. The feasible dispersion of magnetite is necessary to target tumor cells and to treat hyperthermia. Magnetite NPs have been synthesized by coprecipitation, hydrothermal and thermal decomposition methods. In particular, monodisperse magnetite NPs are known to be produced by the thermal decomposition of iron oleate. In this study, we thermally decomposed iron acetylacetonate in the presence of oleic acid, oleylamine and 1,2 hexadecanediol. We also attempted to disperse magnetite NPs within a mesoporous aerogels. Methyltriethoxysilicate(MTEOS)-based hybrid silica aerogels were synthesized by a supercritical drying method. To incorporate the magnetite nanoparticles into the hybrid aerogels, we devised two methods: adding the synthesized aerogel into a magnetite precursor solution followed by nucleation and crystal growth within the pores of the aerogels, and the infiltration of magnetite nanoparticles synthesized beforehand into aerogel matrices by immersing the aerogels in a magnetite nanoparticle colloid solution. An analysis using a vibrating sample magnetometer showed that approximately 20% of the magnetite nanoparticles were well dispersed in the aerogels. The composite samples showed that heating under an inductive magnetic field to a temperature of $45^{\circ}C$ is possible.

Ultra-Drawing of Gel Films of Ultra High Molecular Weight Polyethylene/Low Molecular Weight Polymer Blends Containing $BaTiO_3$ Nanoparticles

  • Park Ho-Sik;Lee Jong-Hoon;Seo Soo-Jung;Lee Young-Kwan;Oh Yong-Soo;Jung Hyun-Chul;Nam Jae-Do
    • Macromolecular Research
    • /
    • 제14권4호
    • /
    • pp.430-437
    • /
    • 2006
  • The ultra-drawing process of an ultra high molecular weight polyethylene (UHMWPE) gel film was examined by incorporating linear low-density polyethylene (LLDPE) and $BaTiO_3$ nanoparticles. The effects of LLDPE and the draw ratios on the morphological development and mechanical properties of the nanocomposite membrane systems were investigated. By incorporating $BaTiO_3$ nanoparticles in the UHMWPE/LLDPE blend systems, the ultra-drawing process provided a highly extended, fibril structure of UHMWPE chains to form highly porous, composite membranes with well-dispersed nanoparticles. The ultra-drawing process of UHMWPE/LLDPE dry-gel films desirably dispersed the highly loaded $BaTiO_3$ nanoparticles in the porous membrane, which could be used to form multi-layered structures for electronic applications in various embedded, printed circuit board (PCB) systems.

An Electrochemical Approach for Fabricating Organic Thin Film Photoelectrodes Consisting of Gold Nanoparticles and Polythiophene

  • Takahashi, Yukina;Umino, Hidehisa;Taura, Sakiko;Yamada, Sunao
    • Rapid Communication in Photoscience
    • /
    • 제2권3호
    • /
    • pp.79-81
    • /
    • 2013
  • A novel method of fabricating polythiophene-gold nanoparticle composite film electrodes for photoelectric conversion is demonstrated. The method includes electrodeposition of gold and electropolymerization of 2,2'-bithiophene onto an indium-tin-oxide (ITO) electrode. First, electrodeposition of gold onto the ITO electrode was carried out with various repetition times of pulsed applied potential (0.25 s at -2.0 V vs. Ag/AgCl) in an aqueous solution of $HAuCl_4$. Significant progress of the number density of deposited gold nanoparticles was confirmed from scanning electron micrographs, from 4 (1 time) to 25% (15 times). Next, electropolymerization of 2,2'-bithiophene onto the above ITO electrode was performed under controlled charge condition (+1.4 V vs. Ag wire, 15 $mC/cm^2$). Structural characterization of as-fabricated films were carried out by spectroscopic and electron micrographic methods. Photocurrent responses from the sample film electrodes were investigated in the presence of electron acceptors (methyl viologen and oxygen). Photocurrent intensities increased with increasing the density of deposited gold nanoparticles up to ~10%, and tended to decrease above it. It suggests that the surplus gold nanoparticles exhibit quenching effects rather than enhancement effects based on localized electric fields induced by surface plasmon resonance of the deposited gold nanoparticles.