DOI QR코드

DOI QR Code

The Effect of Mercaptoundecanoic Acid (MUA) Coating on Dispersion Property of Au Nanoparticles in Synthesis of Au/TiO2 Core-shell Nanoparticles

Au/TiO2 core-shell 나노입자의 합성에 있어서 Au 나노입자의 분산특성에 미치는 Mercaptoundecanoic acid (MUA)의 피복 효과

  • Yu, Yeon-Tae (Division of Advanced Materials Engineering, Research Center for Industrial Technology, Chonbuk National University) ;
  • Kim, Byoung-Gyu (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources)
  • 유연태 (전북대학교 공업기술연구센터 신소재공학부) ;
  • 김병규 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2006.12.27

Abstract

Mercaptoundecanoic acid (MUA) has been used to enhance the dispersity of Au nanoparticles in organic solvent and the affinity between the Au nanoparticles surface and titanium dioxide shell in the synthesis of $Au/TiO_2$ core-shell composite nanoparticles. The dispersity of the MUA-coated Au nanoparticles in ethanol aqueous solution with different concentration of $H_2O$ was investigated by UV-Vis. absorption spectrum and the coating amount of MUA was varied from 0.02 mM to 1.0 mM. The MUA-coated Au nanoparticles were highly dispersed in pure $H_2O$ in the wide range of the coating amount of MUA. On the contrary, the MUAcoated Au nanoparticles showed an enhanced stability in the ethanol/$H_2O$=8/2 mixed solution only when the coating amount of MUA was 0.05 mM, and in the ethanol/$H_2O$=7/3 mixed solution when the coating amount of MUA was in the range from 0.02 mM to 0.17 mM. From this systematic study, it can be inferred that the stability and the dispersibility of Au nanoparticles in organic solvents are highly sensitive towards the amount of MUA coating.

Keywords

References

  1. K. P. Velikov and A. Blaaderen, Langmuir, 17(16), 4779 (2001) https://doi.org/10.1021/la0101548
  2. P. Mulvaney, L. M. Liz-Marzan, M. Glersig and T. Ung, J. Mater, Chem.,10, 1259 (2000) https://doi.org/10.1039/b000136h
  3. T. Ung, L. M. Liz-Marzan and P. Mulvaney, Langmuir, 14(14), 3740 (1998) https://doi.org/10.1021/la980047m
  4. S. Chang, L. Liu and, S. A. Asher, J. Am. Chem. Soc.,116, 6739 (1994) https://doi.org/10.1021/ja00094a032
  5. J. Wagner, T. Autenrieth and R. Hempelmann, Journal of magnetism and magnetic materials, 252, 4 (2002) https://doi.org/10.1016/S0304-8853(02)00729-1
  6. F. G. Aliev M. A. Correa-Duarte, A. Marnedov, J. W. Ostrander, M. Giersig, L. M. Liz-Marzan and N. A. Kotov, Advanced materials, 11(12), 1006 (1999) https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2
  7. P. Mulvaney, Langmuir, 12, 788 (1996) https://doi.org/10.1021/la9502711
  8. M. Jakob and H. Levanon, Nano lett., 3(3), 353 (2003) https://doi.org/10.1021/nl0340071
  9. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz, J. Chem, Phys., 116(15), 6755 (2002) https://doi.org/10.1063/1.1462610
  10. I. P. Santoes, D. S. Koktysh, A. A. Mamedov, M. Gilersig, N. A. Kotov and L. M. Liz-Marzin, Langmuir, 16(6), 2731 (2000) https://doi.org/10.1021/la991212g
  11. R. T. Tom, A. S. Nair, N. Singh, M. Aslam, C. L. Nagendra, R. Philip, K. Vijayamohanan and T. Pradeep, Langmuir, 19(8), 3439 (2003) https://doi.org/10.1021/la0266435
  12. J. Du, J. Zhang, Z. Liu, B. Han, T. Jiang and Y. Huang, Langmuir, 22(3), 1307 (2006) https://doi.org/10.1021/la052337q
  13. L. Zhang, D. Xia and Q. Shen. Journal of Nanoparticle Research, 8, 23 (2006) https://doi.org/10.1007/s11051-005-4883-9
  14. K. S. Mayya., D. I. Gittins and F. Caruso, Chem, Mater.,13(11), 3833 (2001) https://doi.org/10.1021/cm011128y
  15. H. Sakai, T. Kanda, H. Shibata, T. Obkubo and M. Abc, J. Am. Chem, Soc., 128(15), 4945 (2006) https://doi.org/10.1021/ja058083c
  16. Y. T. Yu and P. Mulvaney, Mater, Trans., JIM, 45(3), 964 (2004) https://doi.org/10.2320/matertrans.45.964
  17. H. W. Kwon. Y. M. Lim and Y. T. Yu, Korea. J. Mater. Res., 16(8), 524 (2006) https://doi.org/10.3740/MRSK.2006.16.8.524
  18. J. Turkevich and J. Hillier, Anal. Chem, 21, 475 (1949) https://doi.org/10.1021/ac60028a009