• Title/Summary/Keyword: Composite multilayer insulation

Search Result 2, Processing Time 0.018 seconds

A Study on the Insulation Performance of Composite Multilayer Insulation by Applciation of Heat Storage Tank (축열조용 복합 다층 단열재의 단열 성능 연구)

  • Choi, Gyuhong;Hwang, Seung Sik;Shin, Donghoon;Park, Woo Sung;Park, Dae Woong;Son, Seung Kil;Chung, Tae Yong
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.82-87
    • /
    • 2014
  • MLI(Multi-layer Insulation) is widely used to get highly insulating on cryogenic system in order to reduce heat loads. MLI for satellites thermal performance is changed by materials and laminated method. In this study, a composite multilayer insulation by application of heat stroage tank performance were compared with materials and laminated to change the way. Experimental methods of the KS C 9805 was used, the composite multilayer insulation and EPS was compared with the insulation performance. A method for analysis of experimental results is the equivalent thickness about CMI and the insulation performance were used to compare thermal conductance. As a results, the equivalnet thickenss and the thermal conductance of the composite multilayer insulation were smaller than the EPS and the thermal performance are more excellent. In addition, the configuration of the composite multilayer insulation materials and laminated method varies depending on the overall heat transfer coefficient was confirmed.

An Analysis Using Numerical Model of Composite Multi-Layer Insulation for SOFC (SOFC용 고온 적층 단열재의 해석적 고찰)

  • CHOI, CHONGGUN;HWANG, SEUNG-SIK;CHOI, GYU-HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.540-548
    • /
    • 2019
  • This study was conducted to develop insulation for solid oxide fuel cell (SOFC). The developed insulation is based on the lamination technology and the radiation shielding technology of the satellite insulation. The insulation material is consisting of insulation material for conduction resistance, spacer, and radiation shielding material. The experimental apparatus consisting vacuum bell jar, pump, heater and temperature recording device has developed to verify the performance of the insulation. The experimental values were used as reference data for the modeling development. In this paper, heat transfer is assumed to be one- dimensional phenomena for the prediction of insulation performance and internal temperature distribution in high temperature region of SOFC. The developed model was used to compare the performance difference of insulation types according to composition materials. The analysis result shows that the insulation including spacer and radiation shielding has better heat insulation performance than other cases. In this study, the thickness reduction effect of about 20% was shown compared to the insulation including only conductive material. It is noted that the radiant shielding material should be carefully selected for durability, because SOFC insulation should be used for a long time at high temperature.