• Title/Summary/Keyword: Composite hardness

Search Result 699, Processing Time 0.022 seconds

A study on the Fabrication of Copper-clad Aluminum Composite using Hydrostatic Extrusion (정수압 압출을 이용한 Copper-clad Aluminum 복합계 제조에 대한 연구)

  • 한운용;이경엽;박훈재;윤덕계;김승수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.179-184
    • /
    • 2004
  • In this work, a copper-clad aluminum composite was fabricated using hot hydrostatic extrusion with various extrusion ratios (8.5, 19, 49) and semi-die angles (30, 45, 60 degree) at a temperature of 32$0^{\circ}C$, Material characteristics of copper-clad aluminum composites were determined from compression tests and hardness tests The results showed that for ER of 8.5, the optimum semi-die angle was below or equal to 30 degree and a pressure drop was about 31%. For ER of 19, the optimum semi-die angle was in the range of 40 to 50 degree and a pressure drop was about 38%. In the case of ER=49, the optimum semi-die angle was above or equal to 60 degree and a pressure drop was about 36%. Compressive yield strength was maximum for ER of 8.5 and semi-die angle of 30 degree and the value of maximum was 155 MPa. Uniform hardness distribution was obtained as the extrusion ratio increases and the semi-die angle decreases. In the case of ER=8.5 and semi-die angle of 30 degree, the lowest extrusion pressure and the maximum compressive yield strength was obtained. Therefor, it was concluded that the optimum extrusion condition for fabricated copper-clad aluminum composites under hydrostatic pressure environment was ER of 19 and semi-die angle of 30 degree.

Study on the Improvement of wear properties of Automobile elements in Titanium alloy Coated (티타늄합금 코팅된 자동차 부품의 마모특성 향상에 관한 연구)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.574-580
    • /
    • 2013
  • In this paper, The process of thin-film coating technology was applied to improve adhesion of the hardness thin film and nitride layer. This thin-film coating technology have formed composite thin-film to gain hardness and toughness used in press mold. The thin-film coating manufacturing technology increased vacuum present in the vacuum chamber and improved the throw ratio of the gun power using physical vapor deposition coating technology. Ti alloys target improved performance and surface material through the development of a composite film coating technology for various precision machining parts.

Fabrication and Characteristics of YSZ-TiC Ceramics Composite by Using Hot Pressing (고온가압소결을 이용한 YSZ-TiC 세라믹스 복합체의 제조와 특성)

  • Choi, Jae-Hyung;Choi, Ji-Young;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.381-388
    • /
    • 2021
  • Zirconia has excellent mechanical properties, such as high fracture toughness, wear resistance, and flexural strength, which make it a candidate for application in bead mills as milling media as well as a variety of components. In addition, enhanced mechanical properties can be attained by adding oxide or non-oxide dispersing particles to zirconia ceramics. In this study, the densification and mechanical properties of YSZ-TiC ceramic composites with different TiC contents and sintering temperatures are investigated. YSZ - x vol.% TiC (x=10, 20, 30) system is selected as compositions of interest. The mixed powders are sintered using hot pressing (HP) at different temperatures of 1300, 1400, and 1500℃. The densification behavior and mechanical properties of sintered ceramics, such as hardness and fracture toughness, are examined.

Characteristics according to the Amount of HAp Added in Resin for Tooth Repair

  • Hwang, Sungu;Lim, Jinhyuck;Ryu, Suchak
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.521-525
    • /
    • 2019
  • A study was conducted to investigate the possibility of a composite material containing a composite resin as a matrix and hydroxyapatite (HAp) powder as a substitute material for tooth repair. As the content of HAp increased, hardness value (111.9 HV at 9%) increased and flexural strength (73.3 MPa at 9%) decreased. Observation of the microstructure after immersion in a simulated body fluid (SBF) solution confirmed a dense structure due to mutual coagulation and curing. It was thought that fine HAp recrystals were formed with the lapse of time, and they were entangled to form a condensation structure and had a dense structure. In addition, since the activity was shown by the ion migration on the surface of a tooth, it was highly likely that a biocompatible bond occurred during tooth contact. Therefore, it could be used as a substitute material for tooth repair.

Preparation of SiC Composite by the Method of Reaction-Bonded Sintering (반응결합 소결법을 이용한 SiC 복합체 제조)

  • 한인섭;양준환;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.5
    • /
    • pp.561-571
    • /
    • 1994
  • For the preparation of SiC composite, the properties of reaction sintering in the SiC-C-Si-Ti system with the titanium contents variation were investigated. Either the case of titanium additions or the case of direct infiltration of titanium in SiC+C preform, the newly formed fine-grained $\beta$-SiC, which was reacted from the molten silicon with graphite, was intergranulated between the original $\alpha$-SiC particles. Also titanium disilicide (TiSi2) was discontinuously formed isolated pocket in silicon matrix. The amount of titanium disilicide was gradually increased as titanium content increase. With the results of hardness and fracture toughness measurement, SiC-titanium disilicide (TiSi2) composite represented high properties compared with the system of the infiltrated pure silicon.

  • PDF

Characterization of the Ceramic Reinforced AC4C Matrix Composites Processed by Squeeze Casting (용탕단조법으로 제조된 AC4C 합금기 세라믹강화 복합재료의 특성연구)

  • Kim, Eok-Soo
    • Journal of Korea Foundry Society
    • /
    • v.25 no.2
    • /
    • pp.88-94
    • /
    • 2005
  • The microstructure and mechanical property of the ceramic reinforced AC4C matrix composites processed by squeeze casting were investigated. In this study Kaowool and Saffil fiber which are ceramic reinforcements are used as preform materials. As a matrix material, Al-7wt.%Si-0.3wt.%Mg(AC4C) has been used. In case of Kaowool and Saffil/AC4C composites, 7.5 MPa squeezing pressure and minimum 7.0% binder amount are needed to produce sound composite materials. The tensile strength of Kaowool/ AC4C composite is lower than the matrix metal and this can be explained by the melt unfilling due to formed cluster of Kaowool reinforcements. But the mechanical properties of hardness, wear resistance and thermal expansion are better than the matrix materials due to the strengthening effect of ceramic reinforcements.

Development of 132kV XLPE Cable Composite Bushing EB-A (132kV XLPE Cable용 Composite Bushing 기중종단접속함 개발)

  • Kim, J.H.;Oh, E.J.;Kim, K.Y.;Park, J.K.;Jeoung, Y.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.547-549
    • /
    • 2000
  • Silicone insulators have many advantages over porcelain insulators. Especially silicone insulators have good characteristics of impact hardness, surface insulation, ease of processing, mass productivity and don't have risk of bombardment and vandalism. Recently insulation part made by silicone are becoming widely used. In this paper we introduce the development of Sealing End for 132kV XLPE cable with silicone composite hollow insulator and the adoption of it to a actual transmission line in abroad. This paper contains of design procedure, structure, electrical performance of it.

  • PDF

Studies on Preparation of $Ti_3SiC_2$ Particulate Reinforced Cu Matrix Composite by Warm Compaction and its Tribological Behavior

  • Ngai, Tungwai L.;Xiao, Zhiyu;Wu, Yuanbiao;Li, Yuanyuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.853-854
    • /
    • 2006
  • Warm compaction powder metallurgy was used to produce a $Ti_3SiC_2$ particulate reinforced Cu matrix composite. Fabrication parameters and warm compaction behaviors of Cu powder were studied. Based on the optimized fabrication parameters a Cu-based electrical contact material was prepared. Results showed that in expend of some electrical conductivity, addition of $Ti_3SiC_2$ particulate increased the hardness, wear resistivity and anti-friction ability of the sintered Cu-base material.

  • PDF

Fabrication of W-Cu Composite by Resistance Sintering under Ultrahigh Pressure

  • Kwon, Y.S.;Kim, J.S.;Zhou, Z.J.
    • Journal of Powder Materials
    • /
    • v.10 no.3
    • /
    • pp.181-185
    • /
    • 2003
  • Resistance sintering under ultra-high pressure if developed to fabricate W-Cu composite containing 5 to 80v/o copper. The consolidation was carried out under pressure of 6 to 8 GPa and input power of 18 to 23 kW for 50 seconds. The densification effect and microstructure of these W-Cu composites are investigated. The effect of W particle size on ,sintering density was also studied. The micro hardness was measured to evaluate the sintering effect.

Effect of Particle Dispersion on Physical Properties of Ni-CNT Composite Coatings (입자분산이 Ni-CNT 복합도금막의 특성에 미치는 영향)

  • Cheon, Young-Hoon;Bae, Kyoo-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.91-95
    • /
    • 2011
  • Ni-CNT(carbon nanotubes) composite coating is often used for the surface treatment of electronic/mechanical devices to improve the properties of the exisiting Ni electroplating. For this, the dispersion of CNT particle is a critical process. In this study, ball milling and additive called sodium dodecyl sulfate(SDS) are employed for dispersion. Electroplated Ni-CNT films were examined by SEM-EDX, AES, microhardness tester, 4-point probe and contact angle measurement to find the optimum dispersion conditions. Ni-CNT coatings formed by ball milling for 9 hrs and with addition of SDS 12 times of CNT contents showed the highest hardness, reasonable resistivity and non-stick characteristics.