• Title/Summary/Keyword: Composite fraction

Search Result 709, Processing Time 0.026 seconds

Optimization of growth conditions for cultivation of Phellinus linteus mycelia using swine waste as a growth substrate (돈분뇨를 기질로 활용한 고부가 가치 상황버섯 균사체 배양조건 최적화 연구)

  • Koo, Taewoan;Lee, Joonyeob;Cho, Kyungjin;Lee, Jangwoo;Shin, Seung Gu;Hwang, Seokhwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.53-60
    • /
    • 2015
  • Newly, nutrients recovery by bioconversion in the swine waste which caused serious problems due to its high organic fraction and content of nutrients such as phosphorus and nitrogen is viewed as a considerable approach since it produces valuable product as well as recycling of resources. Consequently, it is necessary to find new methods to treat swine waste. One possible solution to this problem is to use this potential pollutant as a growth substrate for economically valuable products. The study for the fundamental improvement of bioconversion efficiency by finding optimum growth conditions using statistical models and biotechnology was performed. A novel approach to utilize swine waste by cultivating mycelia of the mushroom Phellinus linteus are described. A central composite face-centered design (CCF) for the experiments was used to develop empirical model providing a quantitative interpretation of the relationships among the three variables, which were substrate concentration, pH, and temperature. The maximal radial extension rate (2.78mm/d) of P.linteus was determined under the condition of 5.0 g COD/L, pH 5.0, and temperature $29.7^{\circ}C$. The results of this study suggest that swine waste could be utilized as a growth substrate for the cultivation of mushroom mycelia enhancing an efficiency of utilizing this by-product of the livestock industry.

Flexural and Impact Resisting Performance of HPFRCCs Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCCs의 휨 및 충격 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.705-712
    • /
    • 2009
  • HPFRCCs (high-performance fiber reinforced cementitious composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of PVA (polyvinyl alcohol) fiber, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCCs. In this study, flexural tests were carried out to evaluate the flexural behavior of HPFRCCs and to optimize mix proportions. Two sets of hybrid fiber reinforced high performance specimens with total fiber volume fraction of 2 % were tested: the first set prepared by addition of short and long PVA fibers at different combination of fiber volume fractions, and the second set by addition of steel. In addition, in order to assess the performances of the HPFRCCs against to high strain rates, drop weight tests were conducted. Lastly, the sprayed FRP was applied on the bottom surface of specimens to compare their impact responses with non-reinforcing specimens. The experimental results showed that the specimen prepared with 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed the other specimens under flexure, and impact loading.

Spectroscopy of Local Starburst Galaxies (가까운 폭발적 항성생성은하의 분광 관측)

  • Lee, Cheolhui;Shim, Hyunjin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.209-221
    • /
    • 2017
  • We investigate the star formation rate, stellar mass, and gas-phase metallicity of local starburst galaxies with different star formation time scales based on their optical spectra. The observation is made using the longslit spectrograph attached to the 4K CCD on the Bohyunsan Optical Astronomy Observatory 1.8m telescope, targeting 21 Wolf-Rayet galaxies as young starbursts and 13 UV excess galaxies as slightly older starbursts. A Baldwin-Phillips-Terlevich diagram analysis shows that 50% of the observed targets are pure star-forming galaxies while only 15% are classified as Active Galactic Nuclei. Fraction of galaxies that reside in composite region is higher in UV excess galaxies than in Wolf-Rayet galaxies, suggesting that the AGN development requires extra time after the onset of the star formation. Most of the observed starburst galaxies have stellar masses of $10^{9-11}M_{\odot}$ and stellar formation rates of $0.01-100M_{\odot}yr^{-1}$, and their star formation rates are consistent with that of the SDSS star forming main sequence galaxies of similar stellar mass. There is no significant difference between Wolf-Rayet galaxies and UV excess galaxies in terms of the stellar mass and star formation rate. We also see a mass-metallicity relation for local starbursts with slightly lower metallicity for a given stellar mass, which implies the existence of a strong feedback activity due to the star formation in these galaxies.

Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation (바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera)칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-85
    • /
    • 2011
  • The main purpose of this study is to evaluate the potential of producing bioethanol from yellow poplar ($Liriodendron$ $tulipifera$) wood chips by oxalic acid pretreatment and to examine the pretreatment conditions by response surface methodology (RSM). Based on $2^3$ factorial design, adjusted variables were reaction temperature ($^{\circ}C$), residence time (min), and acid loading (g/g), and a series of distinct 15 experimental conditions was organized with duplication at central point (total 16 performances). After pretreatment, simultaneous saccharification and fermentation (SSF) was subjected on solid fraction with yeast strain $Pichia$ $stipitis$. Maximum ethanol yields of the most samples were measured at 72 hours and applied to RSM as a dependent variable. 9.7 g/${\ell}$ of ethanol was produced from the solid pretreated at $180^{\circ}C$ for 40 min with 0.013 g/g of oxalic acid loading. According to the response surface methodology, it was determined that the temperature is the most governing factor via statistic analysis.

Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials ($Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성)

  • 임흥준;김영한;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.

Analysis of Temperature dependent Thermal Expansion Behavior of $\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ Composites ($\textrm{SiC}_\textrm{p}/\textrm{Al}_2\textrm{O}_{3f}/\textrm{Al}$ 복합재료의 온도에 따른 열팽창 특성 해석)

  • 정성욱;남현욱;정창규;한경섭
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • This study developed SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt. % of the inorganic binder as well as the A1$_2$O$_3$ fiber and SiC Particles with the volume fraction of 1:10 were added to the composites, which were produced in the newly designed mold. For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to 300 and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC$_{p}$/A1$_2$O$_3$$_{f}$/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study.

Biological Activities or oat soluble $\beta$-glucans (귀리 수용성 $\beta$-glucan의 생물활성)

  • 강태수;정헌상;박희정;이명렬;공영준;정익수
    • Food Science and Preservation
    • /
    • v.10 no.4
    • /
    • pp.547-553
    • /
    • 2003
  • To develop the health and functional food material from oats, this study was conducted to determine the biologiral activities(antibacterial, antioxidative and mtltmor effects) of oat bran's soluble ${\beta}$-glucans obtained from oat bran concentrate(OBC) by central composite experimental design. The antibacterial effect of oat's ${\beta}$-glucans in the concentration of 250, 500$\mu\textrm{g}$/disc was not detected by paper disc method, and no antioxidative effect of them in the concentration of 5% by electron donating ability. The growth inhibition on tumor cell lines of oat's soluble ${\beta}$ -glucans was significantly higher in the experimental fraction of No. 7(temperature 45$^{\circ}C$, ethanol 15%, pH 6) than the other fractions(p<0.05). The maximal values of growth inhibitions on AGS, Hep3B and A549 cell lines in the cancentration of 1mg/ml are 59%, 58% and 54% respectively. In addition, the inhibition effect on three tumor cell lines of No. 1(temperature 5$^{\circ}C$, ethanol 5%, pH 6) was relatively high. From the results of response surface methodology, as the values of independent variables changed, they influenced the growth inhibition effect on this cell lines. With this on work further research is required to clarify antitumor effects.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

New Method for Combined Quantitative Assessment of Air-Trapping and Emphysema on Chest Computed Tomography in Chronic Obstructive Pulmonary Disease: Comparison with Parametric Response Mapping

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Namkug Kim;Jaeyoun Yi;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh;Sang-Do Lee
    • Korean Journal of Radiology
    • /
    • v.22 no.10
    • /
    • pp.1719-1729
    • /
    • 2021
  • Objective: Emphysema and small-airway disease are the two major components of chronic obstructive pulmonary disease (COPD). We propose a novel method of quantitative computed tomography (CT) emphysema air-trapping composite (EAtC) mapping to assess each COPD component. We analyzed the potential use of this method for assessing lung function in patients with COPD. Materials and Methods: A total of 584 patients with COPD underwent inspiration and expiration CTs. Using pairwise analysis of inspiration and expiration CTs with non-rigid registration, EAtC mapping classified lung parenchyma into three areas: Normal, functional air trapping (fAT), and emphysema (Emph). We defined fAT as the area with a density change of less than 60 Hounsfield units (HU) between inspiration and expiration CTs among areas with a density less than -856 HU on inspiration CT. The volume fraction of each area was compared with clinical parameters and pulmonary function tests (PFTs). The results were compared with those of parametric response mapping (PRM) analysis. Results: The relative volumes of the EAtC classes differed according to the Global Initiative for Chronic Obstructive Lung Disease stages (p < 0.001). Each class showed moderate correlations with forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity (FVC) (r = -0.659-0.674, p < 0.001). Both fAT and Emph were significant predictors of FEV1 and FEV1/FVC (R2 = 0.352 and 0.488, respectively; p < 0.001). fAT was a significant predictor of mean forced expiratory flow between 25% and 75% and residual volume/total vital capacity (R2 = 0.264 and 0.233, respectively; p < 0.001), while Emph and age were significant predictors of carbon monoxide diffusing capacity (R2 = 0.303; p < 0.001). fAT showed better correlations with PFTs than with small-airway disease on PRM. Conclusion: The proposed quantitative CT EAtC mapping provides comprehensive lung functional information on each disease component of COPD, which may serve as an imaging biomarker of lung function.