Browse > Article
http://dx.doi.org/10.5658/WOOD.2011.39.1.75

Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation  

Kim, Hye-Yun (Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University)
Lee, Jae-Won (Dept. of Forest Products and Technology (BK 21 Program), Chonnam National University)
Jeffries, Thomas W. (Forest Products Laboratory, One Gifford Pinchod Drive)
Choi, In-Gyu (Dept. of Forest Sciences, College of Agriculture & Life Sciences, Seoul National University)
Publication Information
Journal of the Korean Wood Science and Technology / v.39, no.1, 2011 , pp. 75-85 More about this Journal
Abstract
The main purpose of this study is to evaluate the potential of producing bioethanol from yellow poplar ($Liriodendron$ $tulipifera$) wood chips by oxalic acid pretreatment and to examine the pretreatment conditions by response surface methodology (RSM). Based on $2^3$ factorial design, adjusted variables were reaction temperature ($^{\circ}C$), residence time (min), and acid loading (g/g), and a series of distinct 15 experimental conditions was organized with duplication at central point (total 16 performances). After pretreatment, simultaneous saccharification and fermentation (SSF) was subjected on solid fraction with yeast strain $Pichia$ $stipitis$. Maximum ethanol yields of the most samples were measured at 72 hours and applied to RSM as a dependent variable. 9.7 g/${\ell}$ of ethanol was produced from the solid pretreated at $180^{\circ}C$ for 40 min with 0.013 g/g of oxalic acid loading. According to the response surface methodology, it was determined that the temperature is the most governing factor via statistic analysis.
Keywords
yellow poplar (Liriodendron tulipifera); oxalic acid pretreatment; simultaneous saccharification and fermentation (SSF); bioethanol; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, J., R. Rodrigues, H. Kim, I. Choi, and T. Jeffries. 2010. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation. Bioresource Technology 101(12): 4,379-4,385.   DOI   ScienceOn
2 Meyer-Pinson, V., K. Ruel, F. Gaudard, G. Valtat, M. Petit-Conil, and B. Kurek. 2004. Oxalic acid: a microbial metabolite of interest for the pulping industry. Comptes Rendus Biologies 327(9-10): 917-925.   DOI   ScienceOn
3 Mittal, A., S. Chatterjee, G. Scott, and T. Amidon. 2009. Modeling xylan solubilization during autohydrolysis of sugar maple and aspen wood chips: Reaction kinetics and mass transfer. Chemical Engineering Science 64(13): 3031-3041.   DOI   ScienceOn
4 Navarro, A. 1994. Effects of furfural on ethanol fermentation bySaccharomyces cerevisiae: Mathematical models. Current Microbiology 29(2): 87-90.   DOI   ScienceOn
5 Nguyen, Q., M. Tucker, F. Keller, and F. Eddy. 2000. Two-stage dilute-acid pretreatment of softwoods. Applied Biochemistry and Biote- chnology 84(1): 561-576.   DOI   ScienceOn
6 김혜연, 이재원, T. W. Jeffries, 곽기섭, 최인규. 2009. 바이오에탄올 생산에 적합한 백합나무(Linriodendron tulipifera)의 oxalic acid 전처리 효과 탐색. 목재공학 37(4): 397-405.
7 Allen, S., D. Schulman, J. Lichwa, M. Antal Jr., E. Jennings, and R. Elander. 2001. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Industrial & Engineering Chemistry Research 40(10): 2352-2361.   DOI   ScienceOn
8 Cara, C., E. Ruiz, J. Oliva, F. Saez, and E. Castro. 2008. Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology 99(6): 1869-1876.   DOI   ScienceOn
9 Duff, S. and W. Murray. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology 55(1): 1-33.   DOI   ScienceOn
10 Galbe, M. and G. Zacchi. 2002. A review of the production of ethanol from softwood. Applied Microbiology and Biotechnology 59(6): 618-628.   DOI   ScienceOn
11 Jacobsen, S. E. and C. E. Wyman. 2002. Xylose monomer and oligomer yields for uncatalyzed hydrolysis of sugarcane bagasse hemicellulose at varying solids concentration. Industrial & Engineering Chemistry Research 41(6): 1454-1461.   DOI   ScienceOn
12 Jeffries, T., I. Grigoriev, J. Grimwood, J. Laplaza, A. Aerts, A. Salamov, J. Schmutz, E. Lindquist, P. Dehal, and H. Shapiro. 2007. Genome sequence of the lignocellulose-bioconverting and xylosefermenting yeast Pichia stipitis. Nature Biotechnology 25(3): 319-326.   DOI   ScienceOn
13 Perez, J., I. Ballesteros, M. Ballesteros, F. Saez, M. Negro, and P. Manzanares. 2008. Optimizing Liquid Hot Water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87(17-18): 3640-3647.   DOI   ScienceOn
14 Tucker, M., J. Farmer, F. Keller, D. Schell, and Q. Nguyan. 1998. Comparison of yellow poplar pretreatment between NREL digester and Sunds hydrolyzer. Applied Biochemistry and Biotechnology 70(1): 25-35.   DOI   ScienceOn
15 Wyman, C., B. Dale, M. Holtzapple, M. Ladisch, Y. Lee, and J. Saddler. 2007. Pretreatment: the key to unlocking low-cost cellulosic ethanol Biofuels. Bioproducts and Biorefining 2(1): 26-40.
16 Nichols, N., L. Sharma, R. Mowery, C. Chambliss, G. Van Walsum, B. Dien, and L. Iten. 2008. Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme and Microbial Technology 42(7): 624-630.   DOI   ScienceOn
17 Olofsson, K., A. Rudolf, and G. Liden. 2008. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. Journal of Biotechnology 134(1-2): 112-120.   DOI   ScienceOn
18 Ozcan, S., P. Kotter, and M. Ciciary. 1991. Xylanhydrolysing enzymes of the yeast Pichia stipitis. Applied Microbiology and Biotechnology 36(2): 190-195.   DOI   ScienceOn
19 Qureshi, N. and T. Ezeji. 2008. Butanol, 'a superior biofuel' production from agricultural residues (renewable biomass): recent progress in technology. Biofuels, Bioproducts and Biorefining 2(4): 319-330.   DOI
20 Roberto, I., S. Mussatto, and R. Rodrigues. 2003. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Industrial Crops and Products 17(3): 171-176.   DOI   ScienceOn
21 Selig, M., S. Viamajala, S. Decker, M. Tucker, M. Himmel, and T. Vinzant. 2007. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnology Progress 23(6): 1333-1339.   DOI   ScienceOn
22 Shimada, M., M. Ma, Y. Akamatsu, and T. Hattori. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiology Reviews 13(2): 285-295.   DOI   ScienceOn
23 Swaney, R., M. Akhtar, E. Horn, M. Lenz, J. Klungness, and M. Sabourin. 2003 Oxalic acid pretreatment for mechanical pulping greatly improves paper strength while maintaining scattering power and reducing shives and triglycerides. In: Proceedings of the Tappi Fall Technical Confer1ence: Engineering pulping and PCE and I. Tappi Press. Atlanta. GA.
24 Jorgensen, H., J. Kristensen, and C. Felby. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioproducts and Biorefining 1(2): 119-134.   DOI
25 Kenealy, W., E. Horn, and C. Houtman. 2007. Vapor-phase diethyl oxalate pretreatment of wood chips: Part 1. Energy savings and improved pulps. Holzforschung 61(3): 223-229.
26 Kim, H., J. Lee, T. Jeffries, and I. Choi. 2010. Response surface optimization of oxalic acid pretreatment of yellow poplar (Liriodendron tulipifera) for production of glucose and xylose monosaccarides. Bioresource Technology (online published).
27 Lee, J., R. Rodrigues, and T. Jeffries. 2009. Simultaneous saccharification and ethanol fermentation of oxalic acid pretreated corncob assessed with response surface methodology. Bioresource Technology 100(24): 6,307-6,311.   DOI   ScienceOn