• Title/Summary/Keyword: Composite filler metal

Search Result 39, Processing Time 0.02 seconds

Research on Aircraft Lightning Protection Design and Certification of Fuel System in Composite Material (복합재항공기 연료시스템의 낙뢰보호설계 및 인증 연구)

  • Lee, Young-jae;Cho, Wonil;Jeon, Jeonghwan;Koh, Jinhwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.4
    • /
    • pp.130-140
    • /
    • 2017
  • Lightning protective design of an aircraft fuel system is closely related to the safety of the flight. Recently, composite material in building an aircraft becomes more important because it can reduce the weight of the aircraft. The composite materials decrease the protection against the effect of lightning. Lightning protective design of metal material aircraft has been researched for a long time and the design technique has been announced widely. However, research on the lightning protective design using composite material aircraft is very limited. In this study, lightning protective design for fuel tank structural component, access cover, fuel filler cap and drain valve in carbon fiber composite material aircraft have been presented. To show the compliance with FAA airworthiness standard regarding the presented protection designs, three steps, including lightning strike analysis, lightning environment analysis and certification test, were conducted in accordance with FAA AC 20-53.

Microwave Absorbing Properties of Rubber Composites Containing Soft Magnetic Fe-Alloy Particles (철계 연자성 합금 분말을 함유한 고무 복합재의 전파흡수특성)

  • Cho, Han-Shin;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.20 no.2
    • /
    • pp.125-128
    • /
    • 2013
  • Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (${{\varepsilon}_r}^{\prime}{\simeq}250$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}50$) is much greater than that of Sendust composite (${{\varepsilon}_r}^{\prime}{\simeq}70$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}0$). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.

A New Class of NTC Thermistors

  • Kato, Kazuya;Ota, Toshitaka;Hikichi, Yasuo;Unuma, Hidero;Takahashi, Minoru;Suzuki, Hisao
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.168-171
    • /
    • 2000
  • VO$_2$ceramics exhibiting a negative temperature coefficient (NTC) of resistivity have been widely used as temperature dependence resistors. The NTC effect similar to $VO_2$ceramics was observed when a low-thermal-expansion ceramic matrix was loaded near the percolation threshold with conductive metal particles. The resistivity in a composite made from silica glass and 20 vol% Ag filler suddenly decreased from $10^{-7}$ to $10^3\;\Omega$cm at about $300^{\circ}C$.

  • PDF

A Study on the Thermal Conductivity and Mechanical Properties of Electrical Insulation Polymer Composite Materials (실리콘 고분자 복합소재의 열전도도와 기계적 물성에 관한 연구)

  • Won-il Choil;Kye-Kwang Choi
    • Design & Manufacturing
    • /
    • v.18 no.3
    • /
    • pp.37-43
    • /
    • 2024
  • With the development of technology in the electrical and electronic field, research on heat dissipation materials that can efficiently emit and control heat to solve the heat generation problem is being actively conducted. Since heat dissipation materials require electrical insulation and thermal conductivity, the polymer composite material was manufactured by mixing chemically stable silicone resins and ceramic fillers, and thermal conductivity and mechanical properties were observed. At the same filling amount, the larger the particle size and the higher the high thermal conductivity filler was added, the higher the thermal conductivity was, mechanical properties were confirmed to have higher tensile strength and elongation as the particles were smaller and the tissue was denser. After selecting materials in consideration of thermal conductivity and mechanical properties, an appropriate mixing ratio is considered important.

PTC Behavior of Polymer Composites Containing Ionomers upon Electron Beam Irradiation

  • Kim, Jong-Hawk;Cho, Hyun-Nam;Kim, Seong-Hun;Kim, Jun-Young
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.53-62
    • /
    • 2004
  • We have prepared polymer composites of low-density polyethylene (LDPE) and ionomers (Surlyn 8940) containing polar segments and metal ions by melt blending with carbon black (CB) as a conductive filler. The resistivity and positive temperature coefficient (PTC) of the ionomer/LDPE/CB composites were investigated with respect to the CB content. The ionomer content has an effect on the resistivity and percolation threshold of the polymer composites; the percolation curve exhibits a plateau at low CB content. The PTC intensity of the crosslinked ionomer/LDPE/CB composite decreased slightly at low ionomer content, and increased significantly above a critical concentration of the ionomer. Irradiation-induced crosslinking could increase the PTC intensity and decrease the NTC effect of the polymer composites. The minimum switching current (Ι$\sub$trip/) of the polymer composites decreased with temperature; the ratio of Ι$\sub$trip/ for the ionomer/LDPE/CB composite decreased to a greater extent than that of the LDPE/CB composite. The average temperature coefficient of resistance (${\alpha}$$\sub$T/) for the polymer composites increased in the low-temperature region.

Fabrication, Microstructure and Adhesive Properties of BCuP-5 Filler Metal/Ag Plate Composite by using Plasma Spray Process (Plasma spray 공정을 이용한 BCuP-5 filler 금속/Ag 기판 복합 소재의 제조, 미세조직 및 접합 특성)

  • Youn, Seong-June;Kim, Young-Kyun;Park, Jae-Sung;Park, Joo-Hyun;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.333-338
    • /
    • 2020
  • In this study, we fabricate a thin- and dense-BCuP-5 coating layer, one of the switching device multilayers, through a plasma spray process. In addition, the microstructure and macroscopic properties of the coating layer, such as hardness and bond strength, are investigated. Both the initial powder feedstock and plasma-sprayed BCuP-5 coating layer show the main Cu phase, Cu-Ag-Cu3P ternary phases, and Ag phase. This means that microstructural degradation does not occur during plasma spraying. The Vickers hardness of the coating layer was measured as 117.0 HV, indicating that the fine distribution of the three phases enables the excellent mechanical properties of the plasma-sprayed BCuP-5 coating layer. The pull-off strength of the plasma-sprayed BCuP-5 coating layer is measured as 16.5 kg/㎠. Based on the above findings, the applicability of plasma spray for the fabrication process of low-cost multi-layered electronic contact materials is discussed and suggested.

Composite-Based Material and Process Technology Review for Improving Performance of Piezoelectric Energy Harvester (압전 에너지 수확기의 성능 향상을 위한 복합재료 기반 소재 및 공정 기술 검토)

  • Kim, Geon Su;Jang, Ji-un;Kim, Seong Yun
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.357-372
    • /
    • 2021
  • The energy harvesting device is known to be promising as an alternative to solve the resource shortage caused by the depletion of petroleum resources. In order to overcome the limitations (environmental pollution and low mechanical properties) of piezoelectric elements capable of converting mechanical motion into electrical energy, many studies have been conducted on a polymer matrix-based composite piezoelectric energy harvesting device. In this paper, the output performance and related applications of the reported piezoelectric composites are reviewed based on the applied materials and processes. As for the piezoelectric fillers, zinc oxide, which is advantageous in terms of eco-friendliness, biocompatibility, and flexibility, as well as ceramic fillers based on lead zirconate titanate and barium titanate, were reviewed. The polymer matrix was classified into piezoelectric polymers composed of polyvinylidene fluoride and copolymers, and flexible polymers based on epoxy and polydimethylsiloxane, to discuss piezoelectric synergy of composite materials and improvement of piezoelectric output by high external force application, respectively. In addition, the effect of improving the conductivity or the mechanical properties of composite material by the application of a metal or carbon-based secondary filler on the output performance of the piezoelectric harvesting device was explained in terms of the structure of the composite material. Composite material-based piezoelectric harvesting devices, which can be applied to small electronic devices, smart sensors, and medicine with improved performance, can provide potential insights as a power source for wireless electronic devices expected to be encountered in future daily life.

Formation of $Al_2O_3$-Ceramics by Reactive Infiltration of Al-alloy into Insulation Fiber Board (Al-합금의 단열섬유판 반응침투에 의한 $Al_2O_3$-세라믹스의 형성)

  • 김일수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.483-490
    • /
    • 1997
  • Al2O3/metal composites were fabricated by oxidation and reaction of molten Al-alloy into two types of commercial Al2O3-SiO2 fibrous insulation board. The growth rate, composition and microstructure of these materials were described. An AlZnMg(7075) alloy was selected as a parent alloy. Mixed polycrystalline fiber and glass phase fiber were used as a filler. The growth surface of an alloy was covered with and without SiO2. SiO2 powder was employed as a surface dopant to aid initial oxidation of Al-alloy. Al-alloy, SiO2, fiber block and growth inhibitor CaSiO3 were packed sequentially in a alumina crucible and oxidized in air at temperature range 90$0^{\circ}C$ to 120$0^{\circ}C$. The growth rate of composite layer was calculated by measuring the mass increasement(g) per unit surface($\textrm{cm}^2$). XRD and optical microscope were used to investigate the composition and phase of composites. The composite grown at 120$0^{\circ}C$ and with SiO2 dopant showed rapid growth rate. The growth behavior differed a little depending on the types of fiber used. The composites consist of $\alpha$-Al2O3, Al, Si and pore. The composite grown at 100$0^{\circ}C$ exhibited better microstructure compared to that grown at 120$0^{\circ}C$.

  • PDF

Nanoscale Longitudinal Normal Strain Behavior of ${Si_3}{N_4}$-to-ANSI 304L Brazed Joints under Pure Bending Condition

  • Seo, D.W.;Lim, J.K.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • To combine the mechanical advantages of ceramics with those of metals, one often uses both materials within one composite component. But, as known, they have different material properties and fracture behaviors. In this study, a four-point bending test is carried out on $Si_3N_4$ joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu interlayer at room temperature to evaluate their longitudinal strain behaviors. And, to detect localized strain, a couple of strain gages are pasted near the joint interfaces of the ceramic and metal sides. The normal strain rates are varied from $3.33{\times}10^5$ to $3.33{\times}10^{-1}s^{-1}$ Within this range, the experimental results showed that the four-point bending strength and the deflection of the interlayer increased with increasing the strain rate.

  • PDF

Analysis of Glass Composition on Low k Materials (저유전율 소재에서의 유리조성에 대한 분석)

  • Na, Yoon-Soo;Hwang, Jong-Hee;Lim, Tae-Young;Shin, Hyo-Soon;Kim, Jong-Hee;Cho, Yong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.177-177
    • /
    • 2008
  • The effect of several $SiO_2-B_2O_3-Al_2O_3$-R(R;Ca, Sr, Ba) borosilicate glass system on sintering behavior, dielectric properties and mechanical properties of glass/ceramic composites were investigated. The amount of '+2 valency' metal elements(Ca, Sr, Ba) were examined in LTCC composite of low k glass with cordierite filler. It was sintered for 60minutes in temperature range from 850C to 950. Properties of frit and glass/ceramic composites were analyzed by DTA, XRD, SEM, Network Analyzer, UTM and so on. Dielectric constant ($\varepsilon_r$) and $Q{\times}f_0$ (Q) of the composite with 50% glass contents demonstrated $\varepsilon_r$ = 5.4 $Q{\times}f_0$ = 1600 GHz. Sintering was complete and maximum bending strength of 160MPa was obtained.

  • PDF