• Title/Summary/Keyword: Composite cylinder

Search Result 200, Processing Time 0.031 seconds

Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore (North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계)

  • Song, Jun-Ho;Kim, Yong-Woon;LEE, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

Creep damage and life assessment of thick cylindrical pressure vessels with variable thickness made of 304L austenitic stainless steel

  • Kashkoli, Mosayeb Davoudi;Tahan, Khosro Naderan;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.701-715
    • /
    • 2019
  • Using first-order shear deformation theory (FSDT), a semi-analytical solution is employed to analyze creep damage and remaining life assessment of 304L austenitic stainless steel thick (304L ASS) cylindrical pressure vessels with variable thickness subjected to the temperature gradient and internal non-uniform pressure. Damages are obtained in thick cylinder using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The thermo-elastic creep response of the material is described by Norton's law. The novelty of the present work is that it seeks to investigate creep damage and life assessment of the vessels with variable thickness made of 304L ASS using LMP based on first-order shear deformation theory. A numerical solution using finite element method (FEM) is also presented and good agreement is found. It is shown that temperature gradient and non-uniform pressure have significant influences on the creep damages and remaining life of the vessel.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • v.38 no.2
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

Measuring and Correcting The Compressive Axial Strain of Concrete Cylinders Retrofitted by External Jackets (외부자켓에 의해 보강된 콘크리트 압축시편의 압축변형률 측정 및 보정)

  • Choi, Eun-soo;Lee, Young-Geun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.215-222
    • /
    • 2009
  • In this study, steel and FRP jackets are used to confine concrete cylinders. The FRP jacket behaviors compositely with concrete since there is bonding between them. However, the used steel jacket in this study do not behavior compositely with concrete since there is not an adhesive between them. The steel jackets are attached by external forces and the welding. This study suggests the measuring method of the axial strain for the confined concrete cylinders showing noncomposite behavior with the jackets and the correcting method of the measured strain for the composite-behavior jackets. For the noncomposite-behavior steel jacket, the axial strain of the steel surface does not represent the axial strain of the concrete inside. Also, a compressormeter can not be used. Thus, the two rigid plates at the top and bottom of a cylinder are placed and the distance of the two plates are measured and used for estimating the axial strain of the concrete. For the composite-behavior FRP jacket, the vertical strain measured on the FRP surface can be used for estimating the axial strain of the concrete. However, the vertical strain on the FRP surface contains the tensile strain due to the bulge of the concrete and, thus, the tensile strain should be corrected from the vertical strain. The corrected verticals strains compared with the measured strain or a existing constitute model; the result is satisfactory. The uncorrected stress-strain curves have the potential to under estimate the ductile behavior and the energy-dissipation-capacity of the composite-behavior FRP jackets.

A STUDY ON THE MECHANICAL PROPERTIES OF EXPERIMENTAL, COMPOSITES CONTAINING ZIRCONIA FILLER (지르코니아 필러를 첨가한 복합레진의 기계적 성질에 관한 연구)

  • Rew, Kyung-Hee;Choi, Ho-Young;Choi, Kyoung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.421-434
    • /
    • 2000
  • The purpose of this study was to evaluate the influences of incorporation of zirconium-silicate on diametral tensile strength, shear bond strength to the enamel, and depth of cure of 7 experimental composites. One group contained no filler(group 1 or control group), and the other 6 composites contain 75% filler in which zirconium-silicate(Zr-Si) were 0%, 2%, 4%, 6%, 8%, 10% with reduced contents of silica filler, respectively. Both of fillers were treated with 1% silane (${\gamma}$-methacryloxypropyltrimethoxy silane). Light curable monomers were prepared by mixing Bis-GMA and TEGDMA with 3:1 ratio and adding camphoroquinone(CQ) 0.6% with tertiary amine 0.3%. Diametral tensile strengths of specimens with $3mm{\times}6mm$ were measured with Instron (No.4467, USA) with 1mm/min crosshead speed. Shear bond strengths of composites which bonded to bovine enamel etched with 37% phosphoric acid were measured at Instron Testing Machine with as same speed as in diametral tensile strengths. Depth of cure were measured by a method that composite was filled in cylinder mold, illuminated at one side. and uncured composite was removed with acetone, and the residual thickness of composite was measured. Following results were obtained ; 1. Composites containing 0%, 2%, or 4% zirconium-silicate filler(group 2, 3 and 4) showed the statistically higher diametral tensile strength than the others. (p<0.05) 2. Increase of zirconium-silicate filler contents reduced the diametral tensile strength of experimental composites. ($r^2$=0.8721, p=0.0002) 3. Increase of zirconium-silicate filler contents did not affect the shear bond strength of experimental composites. ($r^2$=0.2815, p=0.4067) 4. Increase of zirconium-silicate filler contents reduced significantly the depth of cure of experimental composites. ($r^2$=0.9700, p<0.0001) These results mean that the mechanical properties of composites could not be improved by incorporation of small amount of zirconium-silicate filler. Also, the increased contents of zirconium-silicates fillers was found to reduce the diametral tensile strength and depth of cure.

  • PDF

Simple Method of Integrating 3D Data for Face Modeling (얼굴 모델링을 위한 간단한 3차원 데이터 통합 방법)

  • Yoon, Jin-Sung;Kim, Gye-Young;Choi, Hyung-Ill
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.4
    • /
    • pp.34-44
    • /
    • 2009
  • Integrating 3D data acquired in multiple views is one of the most important techniques in 3D modeling. However, due to the presence of surface scanning noise and the modification of vertices consisting of surface, the existing integration methods are inadequate to some applications. In this paper, we propose a method of integrating surfaces by using the local surface topology. We first find all boundary vertex pairs satisfying a prescribed geometric condition on adjacent surfaces and then compute 2D planes suitable to each vertex pairs. Using each vertex pair and neighbouring boundary vertices projected to their 2d plane, we produce polygons and divide them to the triangles which will be inserted to empty space between the adjacent surfaces. A proposed method use local surface topology and not modify the vertices consisting of surface to integrate several of surfaces to one surface, so that it is robust and simple. We also integrate the transformed textures to a 2D image plane computed by using a cylindrical projection to composite 3D textured model. The textures will be integrated according to the partition lines which considering attribute of face object. Experimental results on real object data show that the suggested method is simple and robust.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

The Study on the Physical Property of Provisional Prosthesis using Modified Temporary Abutment (변형된 임플란트 임시 지대주의 물성에 대한 연구)

  • Yang, Byung-Duk;Yoon, Tae-Ho;Choi, Un-Jae;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.329-340
    • /
    • 2006
  • Statement of problem: Damping of the peak force transmitted to implants has been reported by in vitro studies using impact forces on resin-veneered superstructures. Theoretical assumptions suggest that use of acrylic resin for the occlusal surfaces of a prosthesis would protect the connection between implant and bone. Therefore, the relationship between prosthesis materials and the force transmitted through the implant system also needs to be investigated under conditions that resemble the intraoral mechanical environment. Purpose: The purpose of this study was to analyze the fracture strength and modes of temporary prosthesis when a flange or occlusally extended structure were connected on the top of the abutment. Material and method: Modified abutments of winged and bulk design were made by casting the desired wax pattern which is made on the UCLA type plastic cylinder. Temporary crowns were made using templates on the modified abutments, and its fracture toughness and strain were compared to the traditional temporary prosthesis. To evaluate the effect of aging, 5.000 times of thermocycling were performed, and their result was compared to the 24hours specimen result. Results: The following conclusions were drawn from this study: 1. In the fracture toughness test, temporary crown's fracture line located next to the screw hole while modified designs with metal support showed fracture line on the metal and its propagation along the metal-resin interface. 2. Wing and bulk structure didn't show significant difference in the fracture toughness (p>0.05), but wing structure showed stress concentration on the screw hole area compared to bulk structure which showed even stress distribution. 3. In the fracture toughness test after thermocycling, wing and bulk structure showed increased or similar results in metal supported area while off-metal area and temporary crown showed decreased results. 4. In the strain measurement after thermocycling, its value increased in the temporary and bulk structure. However, wing structure showed decreased value in the loading point while increased value in the screw hole area. Conclusion: Wing type design showed compatible result to the bulk type that its application with composite resin prosthesis to the implant dentistry is considered promising.