• Title/Summary/Keyword: Composite core

Search Result 890, Processing Time 0.021 seconds

Development of Bamboo Zephyr Composite and the Physical and Mechanical Properties

  • SUMARDI, Ihak;ALAMSYAH, Eka Mulya;SUHAYA, Yoyo;DUNGANI, Rudi;SULASTININGSIH, Ignasia Maria;PRAMESTIE, Syahdilla Risandra
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.134-147
    • /
    • 2022
  • The objective of this study is to determine the effect of fiber direction arrangement and layer composition of hybrid bamboo laminate boards on the physical and mechanical properties. The raw material used was tali bamboo (Gigantochloa apus (J.A. & J.H. Schultes) Kurs) rope in the form of flat sheets (zephyr) and falcata veneer (Paraserianthes falcataria (L) Nielsen). Zephyr bamboo was arranged in three layers using water-based isocyanate polymer (WBPI) with a glue spread rate of 300 g/m2. There were variations in the substitution of the core layer with falcata veneers (hybrid) as much as two layers and using a glue spread rate of 170 g/m2. The laminated bamboo board was cold-pressed at a pressure of 22.2 kgf/cm2 for 1 h, and the physical and mechanical properties were evaluated. The results showed that the arrangement of the fiber direction significantly affected the dimensional stability, modulus of rupture, modulus of elasticity, shear strength, and screw withdrawal strength. However, the composition of the layers had no significant effect on the physical and mechanical properties. The bonding quality of bamboo laminate boards with WBPI was considered to be quite good, as shown by the absence of delamination in all test samples. The bamboo hybrid laminate board can be an alternative based on the physical and mechanical properties that can meet laminated board standards.

Fracture Study due to Various Core at Compact Tension Specimen Made of Carbon Fiber Reinforced Plastic (탄소성유강화플라스틱으로 만들어진 소형 인장 시험편에서 여러 종류의 심재에 따른 파손 연구)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.589-596
    • /
    • 2018
  • Transportation or structure has the important role at clothing, food, and housing at modern society. If even the small crack happens and propagates at transportation or structure, the parts are fractured and they can cause a disaster. CT specimen was used in order to investigate the damage trend due to the crack propagation at this study to prevent this situation. As the material of CT specimen, the unidirectional carbon fiber reinforced plastic of the composite material in the limelight nowadays. The laminate angle designated in order of [60/-60/60/-60] was applied to the specimen model with the unidirectional fiber. As the analysis condition, the forced displacement was applied to the hole of upper part after fixing the hole of lower part. At the result of this study, the equivalent stress and shear stress was shown to be higher in order of the structural steel, copper, titanium and aluminum. This study result is thought to be utilized usefully at verifying the damage of CT specimen made of inhomogeneous material.

Static buckling analysis of bi-directional functionally graded sandwich (BFGSW) beams with two different boundary conditions

  • Berkia, Abdelhak;Benguediab, Soumia;Menasria, Abderrahmane;Bouhadra, Abdelhakim;Bourada, Fouad;Mamen, Belgacem;Tounsi, Abdelouahed;Benrahou, Kouider Halim;Benguediab, Mohamed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.44 no.4
    • /
    • pp.503-517
    • /
    • 2022
  • This paper presents the mechanical buckling of bi-directional functionally graded sandwich beams (BFGSW) with various boundary conditions employing a quasi-3D beam theory, including an integral term in the displacement field, which reduces the number of unknowns and governing equations. The beams are composed of three layers. The core is made from two constituents and varies across the thickness; however, the covering layers of the beams are made of bidirectional functionally graded material (BFGSW) and vary smoothly along the beam length and thickness directions. The power gradation model is considered to estimate the variation of material properties. The used formulation reflects the transverse shear effect and uses only three variables without including the correction factor used in the first shear deformation theory (FSDT) proposed by Timoshenko. The principle of virtual forces is used to obtain stability equations. Moreover, the impacts of the control of the power-law index, layer thickness ratio, length-to-depth ratio, and boundary conditions on buckling response are demonstrated. Our contribution in the present work is applying an analytical solution to investigate the stability behavior of bidirectional FG sandwich beams under various boundary conditions.

Investigation of the mechanical behavior of functionally graded sandwich thick beams

  • Mouaici, Fethi;Bouadi, Abed;Bendaida, Mohamed;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed;Ghazwani, Mofareh Hassan;Alnujaie, Ali
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.721-740
    • /
    • 2022
  • In this paper, an accurate kinematic model has been developed to study the mechanical response of functionally graded (FG) sandwich beams, mainly covering the bending, buckling and free vibration problems. The studied structure with homogeneous hardcore and softcore is considered to be simply supported in the edges. The present model uses a new refined shear deformation beam theory (RSDBT) in which the displacement field is improved over the other existing high-order shear deformation beam theories (HSDBTs). The present model provides good accuracy and considers a nonlinear transverse shear deformation shape function, since it is constructed with only two unknown variables as the Euler-Bernoulli beam theory but complies with the shear stress-free boundary conditions on the upper and lower surfaces of the beam without employing shear correction factors. The sandwich beams are composed of two FG skins and a homogeneous core wherein the material properties of the skins are assumed to vary gradually and continuously in the thickness direction according to the power-law distribution of volume fraction of the constituents. The governing equations are drawn by implementing Hamilton's principle and solved by means of the Navier's technique. Numerical computations in the non-dimensional terms of transverse displacement, stresses, critical buckling load and natural frequencies obtained by using the proposed model are compared with those predicted by other beam theories to confirm the performance of the proposed theory and to verify the accuracy of the kinematic model.

The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete

  • Rajai Z. Al-Rousan;Haneen M. Sawalha
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.661-678
    • /
    • 2024
  • The utilization of geopolymer recycled aggregate concrete (GRAC) as the infilled core of the concrete-filled steel tubular (CFST) columns provides superior economic and environmental benefits. However, limited research exists within the field of geopolymer recycled aggregate concrete considered a green and sustainable material, in addition to the limitation of the design guidelines to predict the behavior of such an innovative new material combination. Moreover, the behavior of high-strength concrete is different from the normal-strength one, especially when there is another material of high-strength properties, such as the steel tube. This paper aims to investigate the behavior of the axially loaded square high-strength GRACFST columns through the nonlinear finite element analysis (NLFEA). A total of thirty-two specimens were simulated using ABAQUS/Standard software with three main variables: recycled aggregate replacement ratio (0, 30, and 50) %, width-to-thickness ratios (52.0, 32.0, 23.4, and 18.7), and length-to-width ratio (3, 5, 9, and 12). During the analysis, the response in terms of the axial load versus the longitudinal strain was recorded and plotted. In addition, various mechanical properties were calculated and analyzed. In view of the results, it has been demonstrated that the mechanical properties of high-strength GRACFST columns such as ultimate load-bearing capacity, compressive stiffness, energy absorption capacity, and ductility increase with the increase of the steel tube thickness owing to the improvement of the confinement effect of the steel tube. In contrast, the incorporation of the recycled aggregate adversely affected the mentioned properties except the ductility, while the increase of the recycled aggregate replacement ratio improved the column's ductility. Moreover, it has been found that the increase in the length-to-width ratio significantly reduced both the failure strain and the energy absorption capacity. Finally, the obtained NLFEA results of the ultimate load-bearing capacity were compared with the corresponding predicted capacities by numerous codes. It has been concluded that AISC, ACI, and EC give conservative predictions for the ultimate load-bearing capacity since the confinement effect was not considered by these codes.

Characterization of the PVDF Fibers Fabricated by Hybrid Wet Spinning (하이브리드 습식 공정을 통한 PVDF 섬유의 제조 및 특성에 관한 연구)

  • Jeong, Kun;Kim, Seong-Su
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.145-150
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) as a representative polymer with the piezoelectric property has been studied since the 1960s. Crystalline structure of poly(vinylidene fluoride) polymer is composed of five different crystal structure of the polymer as a semi-crystalline. Among the various crystal structures, ${\beta}-type$ crystal exhibits a piezoelectricity because the permanent dipoles are aligned in one direction. Generally ${\beta}-form$ crystal structure can be obtained through the transformation of the ${\alpha}-form$ crystal structure by the stretching and it can increase the amount through the after treatment as poling process after stretching. ${\beta}-form$ crystal structure the PVDF fibers produced by wet spinning is formed through a diffusion mechanism of a polar solvent in the coagulation bath. However, it has a disadvantage that the diffusion path of the solvent remains as pores in the fiber because the fiber solidification occurs simultaneously with the diffusion of the polar solvent. These pores play a role in reducing effect of poling process owing to effect of disturbances acting on the polarization by the electric field. In this work, the drying method using the microwave was introduced to remove more effectively the residual solvent and the pore within PVDF fibers produced through wet-spinning process and piezoelectric PVDF fibers was produced by transformation of the remaining ${\alpha}$ form crystal structure into ${\beta}-crystal$ structure through the stretching process.

Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum (발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석)

  • Sun, Hong-Peng;Cheon, Seong S.;Cho, Jae-Ung
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.248-253
    • /
    • 2014
  • In this study, tapered double cantilever beam specimens are designed with the variable of angle to investigate the fracture property at the bonded surface of adjoint structure. These specimens are made with four kinds of models as the length of 200 mm and the slanted angles of bonded surfaces on specimens of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. By investigating experiment and analysis result of these specimens, the maximum loads are happened at 120 N, 137 N, 154 N and 171 N respectively in cases of the specimens with slanted angles of $6^{\circ}$, $8^{\circ}$, $10^{\circ}$ and $12^{\circ}$. As the analysis result approach the experimental value, it is confirmed to have no much difference with the values of experiment and analysis. It is thought that the material property can be investigated effectively on shear behavior of the material composed of aluminum foam bonded with adhesive through simulation instead of experiment by applying this study method.

Preparation and Characterization of Demineralized Bone Particle Impregnated Poly(L-lactide) Scaffolds

  • Gilson Khang;Park, Chong-Soo;John M. Rhee;Lee, Sang-Jin;Lee, Young-Moo;Park, Myoung-Kyu;Lee, Hai-Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.9 no.5
    • /
    • pp.267-276
    • /
    • 2001
  • In order to endow with new bioactive functionality from demineralized bone particle (DBP) as natural source to poly(L-lactide) (PLA) synthetic biodegradable polymer, porous DBP/PLA as natural/synthetic composite scaffolds were prepared and compared by means of the emulsion freeze drying and solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. For the emulsion freeze drying method, it was observed that the pore size decreased in the order of 79$\mu\textrm{m}$ (PLA control) > 47$\mu\textrm{m}$ (20% of DBP) > 23 $\mu\textrm{m}$ (40% of DBP) > 15$\mu\textrm{m}$ (80% of DBP). Porosities as well as specific pore areas decreased with increasing the amount of DBR. It can be explained that DBP acts like emulsifier resulting in stabilizing water droplet in emulsion. For the solvent casting/salt leaching method, a uniform distribution of well interconnected pores from the surface to core region were observed the pore size of 80 ∼70 $\mu\textrm{m}$ independent with DBP amount. Porosities as well as specific pore areas also were almost same. For pore size distribution by the mercury intrusion porosimeter analysis between the two methods, the pore size distribution of the emulsion freeze drying method was broader than that of the solvent casting/salt leaching method due to the mechanism of emulsion formation. Scaffolds of PLA alone, DBP/PLA of 40 and 80%, and DBP powder were implanted on the back of athymic nude mouse to observe the effect of DBP on the induction of cells proliferation by hematoxylin and eosin staining for 8 weeks. It was observed that the effect of DBP/PLA scaffolds on bone induction are stronger than PLA scaffolds, even though the bone induction effect of DBP/PLA scaffold might be lowered than only DBP powder, that is to say, in the order of DBP only > DBP/PLA scaffolds of 40 and 80% DBP > PLA scaffolds only for osteoinduction activity. In conclusion, it seems that DBP plays an important role for bone induction in DBP/PLA scaffolds for the application of tissue engineering area.

  • PDF

CERAMIC INLAY RESTORATIONS OF POSTERIOR TEETH

  • Jin, Myung-Uk;Park, Jeong-Won;Kim, Sung-Kyo
    • Proceedings of the KACD Conference
    • /
    • 2001.05a
    • /
    • pp.235-237
    • /
    • 2001
  • ;Dentistry has benefited from tremendous advances in technology with the introduction of new techniques and materials, and patients are aware that esthetic approaches in dentistry can change one's appearance. Increasingly. tooth-colored restorative materials have been used for restoration of posterior teeth. Tooth-colored restoration for posterior teeth can be divided into three categories: 1) the direct techniques that can be made in a single appointment and are an intraoral procedure utilizing composites: 2) the semidirect techniques that require both an intraoral and an extraoral procedure and are luted chairside utilizing composites: and 3) the indirect techniques that require several appointments and the expertise of a dental technician working with either composites or ceramics. But, resin restoration has inherent drawbacks of microleakage. polymerization shrinkage, thermal cycling problems. and wear in stress-bearing areas. On the other hand, Ceramic restorations have many advantages over resin restorations. Ceramic inlays are reported to have less leakage than resin restoration and to fit better. although marginal fidelity depends on technique and is laboratory dependent. Adhesion of luting resin is more reliable and durable to etched ceramic material than to treated resin composite. In view of color matching, periodontal health. resistance to abrasion, ceramic restoration is superior to resin restorationl. Materials which have been used for the fabrication of ceramic restorations are various. Conventional powder slurry ceramics are also available. Castable ceramics are produced by centrifugal casting of heat-treated glass ceramics. and machinable ceramics are feldspathic porcelains or cast glass ceramics which are milled using a CAD/CAM apparatus to produce inlays (for example, Cered. They may also be copy milled using the Celay apparatus. Pressable ceramics are produced from feldspathic porcelain which is supplied in ingot form and heated and moulded under pressure to produce a restoration. Infiltrated ceramics are another class of material which are available for use as ceramic inlays. An example is $In-Ceram^{\circledR}$(Vident. California, USA) which consists of a porous aluminum oxide or spinell core infiltrated with glass and subsequently veneered with feldspathic porcelain. In the 1980s. the development of compatible refractory materials made fabrication easier. and the development of adhesive resin cements greatly improved clinical success rates. This case report presents esthetic ceramic inlays for posterior teeth.teeth.

  • PDF

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.