• Title/Summary/Keyword: Composite Residual Stress

Search Result 233, Processing Time 0.037 seconds

Evaluation on Thermal Shock Damage of Smart Composite using Nondestructive Technique (비파괴 기법을 이용한 스마트 복합재료의 열충격손상평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Lee, Kyu-Chang;Lee, Joon-Hyun
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.37-42
    • /
    • 2007
  • Tensile residual stress is occurred by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite with occurring of compressive residual stress in the matrix by its shape memory effect. A hot press method was used to create the optimal fabrication condition for a Shape Memory Alloy(SMA) composite. The bonding effect of the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at low temperature. The damage degree for the specimen that underwent thermal shock cycles was also discussed.

Analysis of Thermo-Viscoelastic Residual Stresses and Thermal Buckling of Composite Cylinders (복합재 원통구조물의 열-점탄성적 잔류음력 및 열좌굴 해석)

  • Kim, Cheol;Kim, Yeong-Kook;Choi, Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1653-1665
    • /
    • 2002
  • One of the most significant problems in the processing of composite materials is residual stresses. The residual stresses may be high enough to cause cracking in the matrix even before external loads are applied and can degrade the integrity of composite structures. In this study, thermo-viscoelastic residual stresses occurred in the polymeric composite cylinder are investigated. This type of structure is used for the launch vehicle fuselage. The time and degree of cure dependent thermo-viscoelastic constitutive equations are developed and coupled with a thermo-chemical process model. These equations are solved with the finite element method to predict the residual stresses in the composite structures during cure. A launch vehicle experiences high thermal loads during flight and re-entry due to aerodynamic heating or propulsion heat, and the thermal loads may cause thermal buckling on the structure. In this study the thermal buckling analysis of composite cylinders are performed. Two boundary conditions such as all clamped and all simply supported are used for the analysis. The effects of laminates stacking sequences, shapes and residual stresses on the critical buckling temperatures of composite cylinders are investigated. The thermal buckling analysis is performed using ABAQUS.

Measurement Method of Residual Stresses in Thick Composite Cylinders (두꺼운 복합재 원통의 잔류응력 측정방법)

  • Kim, Jong-Woon;Park, Dong-Chang;Lee, Dai-Gil
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.245-248
    • /
    • 2005
  • During manufacturing thick composite cylinders, large thermal residual stresses are developed and induce catastrophic interlaminar failures. Since the residual stresses are dependent on many process parameters, such as temperature distribution during cure, cure shrinkage, winding tension, and migration of fibers, calculation of the residual stresses is very difficult. Therefore a radial-cut method have been used to measure the residual stresses in the composite cylinders. But the conventional radial-cut method needs to know numerous material properties which are not only troublesome to obtain but also vary with change of fiber arrangement during consolidation. In this paper, a new radial-cut method with cut-cylinder-bending test was proposed and the measured residual stresses were compared with calculated thermal residual stresses. It was found that the new radial-cut method which does not need to know any of material properties gave better estimation of residual stresses regardless of radial variation of material properties. Additionally, interlaminar tensile strength could be obtained by the cut-cylinder-bending test.

  • PDF

수정 Eshelby등가 개재물 방법을 이용한 단섬유 금속 복합재료의 열적잔류응력의 해석에 관한 연구

  • 손봉진;이준현;김문생
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.660-665
    • /
    • 1993
  • An elastic model is developed to predict the average thermal residual stresses in the matrix and fiber of a misoriented short fiber composite. The thermal residual stresses are induced by the mismatch in the coefficient of the thermal expansion of the matrix and fiber when the composite is subjected to a uniform temperature change. The model considers two special cases of fiber misorientation ; two-dimensional in-plane and three-dimensional axisymmetric. The analytical formulation of the model is based on Eshelby's equivalent inclusion method and is nuque in that it is able to account for interactions among fibers. The model is more general than past models and it is able to treat prior analyses of the simpler composite systems as extram cases. The present model is to investigate the effects of fiber volume fraction, distribution type, distribution cut-off angle, and aspect ratio on thermal residual stress for both in-plane and axisymmetric fiber misorientation. Fiber volum fraction, aspect ratio, and disturbution cut-off angle are shown to have more significant effects on the magnitude of the thermal residual stress than fiber distrubution type for both in-plane and axisymmetric misorientation.

  • PDF

A study on simplified fatigue design methodology for composite structures (복합재구조물에 대한 단순화된 수명평가방법 고찰)

  • 김성준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.75-78
    • /
    • 2002
  • A simplified methodology is presented to predict fatigue life and residual strength of composite structures. To avoid excessive amount of tests that are required for model characterization, strength degradation parameter is assumed as function of fatigue life. S-N curve is used to extract fatigue life that is required to characterize the stress levels comprising a randomly-ordered load spectrum. And different stress ratios are handled with Goodman correction approach(fatigue envelope). It is assumed that the residual strength is a function of the number of loading cycles and applied fatigue stress amplitude. And the residual strength distribution after an arbitrary load cycles is represented by two parameter Weibull functions.

  • PDF

Morphing of Composite Beam actuated by SMA Actuator (형상기억합금 작동기로 작동되는 복합재 보의 형상변형)

  • Kim Sanghaun;Cho Maenghyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.123-126
    • /
    • 2004
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory effect concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite beam are considered as simple morphing structural components which are based on large deformable 2D composite beam theory. Numerical results of fully coupled SMA-composite structures are presented.

  • PDF

Research on residual stress in SiCf reinforced titanium matrix composites

  • Qu, Haitao;Hou, Hongliang;Zhao, Bing;Lin, Song
    • Steel and Composite Structures
    • /
    • v.17 no.2
    • /
    • pp.173-184
    • /
    • 2014
  • This study aimed to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites. The analytical solution of residual stress field distribution was obtained by using coaxial cylinder model, and the numerical solution was obtained by using finite element model (FEM). Both of the above models were compared and the thermal residual stress was analyzed in the axial, hoop, radial direction. The results indicated that both the two models were feasible to theoretical calculate the thermal residual stress in continuous SiC fiber reinforced titanium matrix composites, because the deviations between the theoretical calculation results and the test results were less than 8%. In the titanium matrix composites, along with the increment of the SiC fiber volume fraction, the longitudinal property was improved, while the equivalent residual stress was not significantly changed, keeping the intensity around 600 MPa. There was a pronounced reduction of the radial residual stress in the titanium matrix composites when there was carbon coating on the surface of the SiC fiber, because carbon coating could effectively reduce the coefficient of thermal expansion mismatch between the fiber and the titanium matrix, meanwhile, the consumption of carbon coating could protect SiC fibers effectively, so as to ensure the high-performance of the composites. The support of design and optimization of composites was provided though theoretical calculation and analysis of residual stress.

Viscoelastic analysis of residual stresses in a unidirectional laminate

  • Lee, Sang Soon;Sohn, Yong Soo
    • Structural Engineering and Mechanics
    • /
    • v.2 no.4
    • /
    • pp.383-393
    • /
    • 1994
  • The residual stress distribution in a unidirectional graphite/epoxy laminate induced during the fabrication process is investigated at the microstress level within the scope of linear viscoelasticity. To estimate the residual stresses, the fabrication process is divided into polymerization phase and cool-down phase, and strength of materials approach is employed. Large residual stresses are not generated during polymerization phase because the relaxation modulus is relatively small due to the relaxation ability at this temperature level. The residual stresses increase remarkably during cool-down process. The magnitude of final residual stress is about 80% of the ultimate strength of the matrix material at room temperature. This suggests that the residual stress can have a significant effect on the performance of composite structure.

Effects of the Residual Stress on Fracture Toughness in ZTA (ZTA에서 잔류응력이 파괴인성 증진에 미치는 영향)

  • Lee, Young-Min;Yu, Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.329-336
    • /
    • 1990
  • In this investigation, bar-shaped specimens which consisted of three layers are prepared to study the effects of residual compressive stress on the mechanical properties in ZTA. The outer layers contained Al2O3 and unstabilized ZrO2 and the central layer contained Al2O3 and stabilized ZrO2(with 5.10wt% Y2O3). When cooled from the sintering temperature, some of zirconia in the outer layers transformed to the monoclinic form while zirconia in the central layer was retained in the tetragonal form. The transformation which induces to dilatational expansion led to the estabilishmenet of compressive stress in the outer layers and balances tensile stress in the central layer. Decrease of outer layer thickness(for a fixed total thickness)increases residual compressive stress. Because of residual compressive stress in the outer layers, the fracture toughness of outer layers of 3-layers composite is 10.21 Mpam1/2, which is increased to 25% above in comparison with 1-layer specimens in ZTA. Also, the 3-layers composite is believed to exhibite greater fracture resistance in contact damage environment from thermal shock test.

  • PDF

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.