• Title/Summary/Keyword: Composite Motor Case

Search Result 50, Processing Time 0.027 seconds

A Study on the Structural Analysis of Joint Part in Accordance with Adhesive Length of a Composite Rocket Motor Case (복합재 연소관의 접착 길이에 따른 체결부의 구조해석)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Hwang, Tea-Kyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.90-96
    • /
    • 2012
  • In order to determine optimal design length of adhesive joint of a composite rocket motor case, stress analysis of joint part according to changes of adhesive length was done. Adhesive length has a range of 50 mm to 300 mm as design variables. The ratio of adhesive length without any stress gradient to initial non-stressed adhesive length was determined as evaluation criteria for selection of adhesive length, which called "stress gradient length ratio". The numerical result showed that stress gradient length ratio of joint part with adhesive length of more than 200 mm was increased very slowly with increase of adhesive length. It means that adhesive length of about 200 mm could be the optimal dimension to ensure the structural safety of joint part against internal pressure of 2,500 psi.

Analysis of filament Wounded Composite Rocket Motor (필라멘트 와인딩 복합재료 연소관의 구조적 안정성 연구)

  • Lee Yoon-kyu;Kwon Tae-hoon;Lee Won-bok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.278-281
    • /
    • 2004
  • The purpose of this paper is to show a reliable analytical method to predict the deflections of F/W Composite Motor Case. Structural analysis and testing of a Carbon/Epoxy Composites Motor Case for Pressure Loadings were performed. This paper presents the development of 3-D layered axi-symmetric solid element for finite element analysis. Finite element analyses were preformed considering fiber angle variation in longitudinal and thickness direction by ANSYS. The analytical results agree well with experimental results.

  • PDF

The Structural Analysis of Wedge Joint in Composite Motor Case (복합재 연소관의 쐐기형 체결부 구조 해석)

  • 황태경;도영대;김유준
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.64-73
    • /
    • 2000
  • The joint parts was composed of inner AL(aluminum) ring, FRP wedge and motor case which was manufactured by filament wound method. Where the motor case consists of helical and hoop layer. The finite element analysis was performed for the design variable of joint parts to improve the performance of motor case. Where the adhesive layer was modeled to elasto-perfect plastic material and the contact condition of AL ring and wedge was modeled by using the contact surface element of ABAQUS. And the sliding distance of AL ring and the hoop strain of composite case were compared to hydro-static test results to verify the accuracy of analysis results. When wedge and AL ring was perfect bonding, though the hoop strain of joint part was reduced, the maximum shear stress was occurred at the adhesive layer. Thus the adhesive layer had failed due to the high shear stress before the failure was occurred at the case. And as another design method, when wedge and AL ring was contact condition, the shear stress on adhesive layer was decreased. But the hoop stress of joint part increased due to the sliding behavior of AL ring. Finally, the fail was occurred at the composite case of joint part. The improved joint method reinforced by hoop layer to the joint parts under contact condition for wedge and Al. ring reduced the joint part's hoop strain by constraint the sliding behavior of AL ring.

  • PDF

A Study on the Nondestructive Test Method for Adhesively Bonded Joint in Motor Case Assembly (연소관 조립체의 접착 체결부에 대한 비파괴 시험 방법 연구)

  • Hwang, Tae-Kyung;Lee, Sang-Ho;Kim, Dong-Ryun;Moon, Soon-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.343-352
    • /
    • 2006
  • In the present paper, the nondestructive test method was suggest to establish the bonding status of a motor case assembly composed of a steel motor case, adiabatic rubber layer and an ablative composite tube with strain data, AE(acoustic emission) signals and UT(ultrasonic test) data. And, finite element analysis was conducted to verify quantitatively the bonding status of motor case assembly under inner pressure loading. The bonding status could be judged whether the bonding status is perfect or contact condition by the data correlation study with AE signals and strain data measured from air pressure test. And, to classify the bonding status of motor case and rubber layer among bonding layers, UT method was also applied. From this study, the bonding status could be classified and detected into fourth types for all bonding layers as follows: (1) initial un-bonding, (2) perfect do-bonding during an air pressure test, (3) partially de-bonding during an air pressure test, and (4) perfect bonding.

Development and Performance Test of the KSLV-I KM Case (KSLV-I KM 케이스 개발 및 성능 시험)

  • Kil, Gyoung-Sub;Lee, Mu-Guen;Lee, Kyung-Won;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.188-196
    • /
    • 2007
  • A composite case was designed to satisfy the required condition of KSLV-I kick motor system. we performed the structure and combustion tests to insure the reliability of the case before the production of the flight model. The hydraulic, vacuum and non destruction testes as the structure test were carried out to confirm the strength of the components of the case and the characteristics of the thermal and structure were investigated through the ground combustion test.

  • PDF

Development of a five-bar finger with redundant actuation (여유구동을 이용한 5관절 휴먼핑거의 개발)

  • 이재훈;이병주;오상록;김병호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1613-1616
    • /
    • 1997
  • In order to develop a human hand mechanism, a 5-bar finger with redundant actuation is designed and implemented. an optimal set of acutator locations and link lengths for the case of one redundant actuator is obtained by employing a composite design index which simulataneously consider several performance indices such as workspace, isotropic index, and force transmission ratio. Each joing is driven by an compact actuator mechanism having ultrasonic motor and a gear set with poeneiometer an controlled by VME Bus-based control system.

  • PDF

Bullet Impact Tests for Solid Rocket Motor (고체추진기관의 탄환충격시험)

  • 윤현걸;류병태;최창선
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.114-122
    • /
    • 2000
  • Bullet impact tests for solid rocket motor were performed and its results wert described. Two motors were made of composite and steel for case material, respectively and their reactions to the bullet impact were compared. Throughout the tests it had been tried to setup the procedure of bullet impact test and criteria of the judgment for the reactions.

  • PDF

Fire Characteristics of Composites for Interior Panels Using Cone calorimeter (콘칼로리미터를 이용한 내장판용 복합재료의 화재특성)

  • 이철규;정우성;이덕희
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Composite materials were used widely due to merit of light weight, low maintenance cost and easy installation. But it is the cause of enormous casualties to men and properties because of weak about the fire. Particularly, it is more serious in case of subway train installed composite materials. For this reason, experimental comparison has been done fur measuring heat release rate(H.R.R) and smoke production rate(S.P.R) of interior panels of electric motor car using cone calorimeter. A high radiative heat flux of 50kW/㎡ was used to bum out all materials and to simulate the condition of fully developed fire case in the tests. It was observed that Heat Release Rate and Smoke Production Rate curves were dependent on the kinds of the interior materials. From the heat release rate curves, the sustained ignition time, peak heat release rate and total heat release rate were deduced, These data are useful in classifying the materials by calculating two parameters describing the possibility to flashover.

Wave Propagation in Unidirectionally Reinforced Composites

  • Hyung-Won Kim;Seong-Eun Kim
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.121-129
    • /
    • 1997
  • Wave propagation was studied for an unidirectionally reinforced composite materials. The velocities, the particle directions and the amplitudes of reflected and transmitted waves were obtained. This analysis involves an immersion C-scan procedure. Snell's law was modified to get the velocities of waves. This analysis could be applied to the detection of flaws in a transversely isotropic composite motor case.

  • PDF

Evaluation of Structural Stiffness Degradation and Burst Pressure Measurement of the FM Kick-Motor Combustion Case (킥모터 FM 규격 연소관에 대한 강성저하 평가 및 파열압력 측정)

  • Yi, Moo-Keun;Cho, In-Hyun;Kim, Joong-Suk;Lee, Won-Bok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.72-77
    • /
    • 2010
  • A hydraulic test on a filament wound case of Kick-Motor was conducted to evaluate the structural stiffness degradation and to confirm the burst performance. Failure criteria have been defined with bursting above 150% of MEOP(Maximum Expected Operation Pressure) and failure in the cylinder. The analysis result showed that filament fiber in the cylinder should be broken at about 2088psig. From a hydraulic test it has been verified that composite case meets the failure requirements, and that the stiffness does not decrease even after a year since the manufacturing.