• Title/Summary/Keyword: Composite Models

Search Result 1,223, Processing Time 0.035 seconds

Development of Composite Load Models of Power Systems using On-line Measurement Data

  • Choi Byoung-Kon;Chiang Hsiao Dong;Li Yinhong;Chen Yung Tien;Huang Der Hua;Lauby Mark G.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.161-169
    • /
    • 2006
  • Load representation has a significant impact on power system analysis and control results. In this paper, composite load models are developed based on on-line measurement data from a practical power system. Three types of static-dynamic load models are derived: general ZIP-induction motor model, Exponential-induction motor model and Z-induction motor model. For the dynamic induction motor model, two different third-order induction motor models are studied. The performances in modeling real and reactive power behaviors by composite load models are compared with other dynamic load models in terms of relative mismatch error. In addition, numerical consideration of ill-conditioned parameters is addressed based on trajectory sensitivity. Numerical studies indicate that the developed composite load models can accurately capture the dynamic behaviors of loads during disturbance.

Residual strength analysis for notched composite laminates (놋취가 있는 복합적층판의 잔류강도 해석)

  • Kim, Sung-Joon;Hwang, In-Hee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.103-111
    • /
    • 2012
  • This study reviews several fracture models for predicting the residual strength of notched composite laminates. Representative experimental results on the residual strength of composite laminates containing a notch subjected to static uniaxial tensile loading have been collected from open literature. And notched strength data for T300/5208 are analyzed. The various parameters associated with the fracture models have been determined for laminates. Notched strength data sets are compared with fracture models and the applicability of the different fracture models in predicting the notched strength of composite laminates is discussed. And static tests have been performed on 2.0mm depth notched specimen. And the test results are compared with analysis models.

Numerical Simulation of Mechanical Behavior of Composite Structures by Supercomputing Technology

  • Kim, Seung-Jo;Ji, Kuk-Hyun;Paik, Seung-Hoon
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.373-407
    • /
    • 2008
  • This paper will examine the possibilities of the virtual tests of composite structures by simulating mechanical behaviors by using supercomputing technologies, which have now become easily available and powerful but relatively inexpensive. We will describe mainly the applications of large-scale finite element analysis using the direct numerical simulation (DNS), which describes composite material properties considering individual constituent properties. DNS approach is based on the full microscopic concepts, which can provide detailed information about the local interaction between the constituents and micro-failure mechanisms by separate modeling of each constituent. Various composite materials such as metal matrix composites (MMCs), active fiber composites (AFCs), boron/epoxy cross-ply laminates and 3-D orthogonal woven composites are selected as verification examples of DNS. The effective elastic moduli and impact structural characteristics of the composites are determined using the DNS models. These DNS models can also give the global and local information about deformations and influences of high local in-plane and interlaminar stresses induced by transverse impact loading at a microscopic level inside the materials. Furthermore, the multi-scale models based on DNS concepts considering microscopic and macroscopic structures simultaneously are also developed and a numerical low-velocity impact simulation is performed using these multi-scale DNS models. Through these various applications of DNS models, it can be shown that the DNS approach can provide insights of various structural behaviors of composite structures.

Failure Criterion for Notched Composite Laminates (놋취가 있는 복합적층판의 파손기준)

  • Kim, Sung-Joon;Jeong, In-Oh;Choi, Ik-Hyeon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.21-26
    • /
    • 2008
  • This study reviews several fracture models for predicting the notched strength of composite laminates. Representative experimental results on the notched strength of composite laminates containing a large notch subjected to static uniaxial tensile loading have been collected from open literature. Notched strength data for T300/5208 are analyzed. and the various parameters associated with the fracture models have been determined for laminates. Notched strength data sets are compared with fracture models and the applicability of the different fracture models in predicting the notched strength of composite laminates is discussed.

  • PDF

Effective Conductivity of Disordered Three-Phase Media (비정상 3상소재의 유효전도율)

  • Kim, In-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.910-932
    • /
    • 1996
  • A problem of determining the effective conductivity of a useful model of sphere-matrix type, disordered three-phase composite media is considered. Specifically, a three-phase media in which two-phase composite spheres, consisting of spheres of conductivity $k_2$((phase 2) and concentric shells of conductivity $k_3$(phase 3), are randomly distributed in a matrix of conductivity $k_1$( (phase 1) is considered. As for the structure models configuring three-phase composite media, three different structure models of PCS, PS-1 and PS-2 models are defined, which are analogous to well-established PCS, PS structure models of two-phase composite media. Futhermore, a generalized PS-PCS structure model is proposed to incorporate thesee three different models in one. Effective condectivity $k^{\ast}$of multiphaes composite media is greatly influenced by the phase connectivity of each disspersed phase material, as well as phase conductivities and phase volume fractions. Phase connectivity of three-phase PCS, PS-1, PS-2 composite media is quantified by the impentrability parameter $\lambda$. Mathematically rigorous first-order cluster bounds on $k^{\ast}$ are derived for these models of three-phase composite media, and as computation examples, first-order cluster bounds on $k^{\ast}$ for three-phase composites consisting of largely different phase conductivities are computed and compared as function of concnectivity parpmeter $\lambda$. Results and discussions are given.

Structural response of rectangular composite columns under vertical and lateral loads

  • Sevim, Baris
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.287-298
    • /
    • 2017
  • The present study aims to determine the structural response of full scaled rectangular columns under both of vertical and lateral loads using numerical methods. In the study, the composite columns considering full concrete filled circular steel tube (FCFRST) and concrete filled double-skin rectangular steel tube (CFDSRST) section types are numerically modelled using ANSYS software. Vertical and lateral loads are applied to models to assess the structural response of the composite elements. Also similar investigations are done for reinforced concrete rectangular (RCR) columns to compare the results with those of composite elements. The analyses of the systems are statically performed for both linear and nonlinear materials. In linear static analyses, both of vertical and lateral loads are applied to models as only one step. However in nonlinear analyses, while vertical loads are applied to model as only one step, lateral loads are applied to systems as step by step. The displacement and stress changes in some critical nodes and sections and contour diagrams are reported by graphs and figures. At the end of the study, it is demonstrated that the nonlinear models reveal more accurate result then those of linear models. Also, it is highlighted that composite columns provide more and more safety, ductility compared to reinforced concrete column.

Finite element modelling of the shear behaviour of profiled composite walls incorporating steel-concrete interaction

  • Anwar Hossain, K.M.;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.659-676
    • /
    • 2005
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. The behaviour of such walling under in-plane shear is important in order to utilise this system as shear elements in a steel framed building. Steel sheet-concrete interface governs composite action, overall behaviour and failure modes of such walls. This paper describes the finite element (FE) modelling of the shear behaviour of walls with particular emphasis on the simulation of steel-concrete interface. The modelling of complex non-linear steel-concrete interaction in composite walls is conducted by using different FE models. Four FE models are developed and characterized by their approaches to simulate steel-concrete interface behaviour allowing either full or partial composite action. Non-linear interface or joint elements are introduced between steel and concrete to simulate partial composite action that allows steel-concrete in-plane slip or out of plane separation. The properties of such interface/joint elements are optimised through extensive parametric FE analysis using experimental results to achieve reliable and accurate simulation of actual steel-concrete interaction in a wall. The performance of developed FE models is validated through small-scale model tests. FE models are found to simulate strength, stiffness and strain characteristics reasonably well. The performance of a model with joint elements connecting steel and concrete layers is found better than full composite (without interface or joint elements) and other models with interface elements. The proposed FE model can be used to simulate the shear behaviour of composite walls in practical situation.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.

Cyclic behaviour of end-plate beam-to-column composite joints

  • Simoes, Rui;da Silva, Luis Simoes;Cruz, Paulo J.S.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.355-376
    • /
    • 2001
  • An experimental research program on end-plate beam-to-column composite joints under cyclic loading is presented. The major focus relates to the identification of the contribution of the concrete confinement in composite columns to the behaviour of the joint, on internal nodes and external nodes, together with an assessment of degradation of strength and stiffness in successive loading cycles. From the experimental results it was possible to identify the various failure modes and to fit the corresponding hysteretic curves to the Richard-Abbott and Mazzolani models. These curve-fitting exercises highlighted the need to adapt both models, either for improved ease of application, or to deal with some aspects previously not covered by those models.

Prediction of moments in composite frames considering cracking and time effects using neural network models

  • Pendharkar, Umesh;Chaudhary, Sandeep;Nagpal, A.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.267-285
    • /
    • 2011
  • There can be a significant amount of moment redistribution in composite frames consisting of steel columns and composite beams, due to cracking, creep and shrinkage of concrete. Considerable amount of computational effort is required for taking into account these effects for large composite frames. A methodology has been presented in this paper for taking into account these effects. In the methodology that has been demonstrated for moderately high frames, neural network models are developed for rapid prediction of the inelastic moments (typically for 20 years, considering instantaneous cracking, and time effects, i.e., creep and shrinkage, in concrete) at a joint in a frame from the elastic moments (neglecting instantaneous cracking and time effects). The proposed models predict the inelastic moment ratios (ratio of elastic moment to inelastic moment) using eleven input parameters for interior joints and seven input parameters for exterior joints. The training and testing data sets are generated using a hybrid procedure developed by the authors. The neural network models have been validated for frames of different number of spans and storeys. The models drastically reduce the computational effort and predict the inelastic moments, with reasonable accuracy for practical purposes, from the elastic moments, that can be obtained from any of the readily available software.