• 제목/요약/키워드: Composite Material Pipes

검색결과 41건 처리시간 0.023초

GFRP 관로의 재료 특성에 관한 실험적 연구 (An Experimental Study of Material Characteristics for GFRP Pipes)

  • 한택희;김성남;강영종;윤기용
    • 한국방재학회 논문집
    • /
    • 제4권2호
    • /
    • pp.35-45
    • /
    • 2004
  • 최근 항공기, 자동차 등에 사용되어왔던 복합재료가 그 사용 영역을 넓혀 교량 상판, 상하수도용 관로 등에 적용되고 있다. 이러한 복합재료의 주요 장점은 고강도, 경량성, 그리고 뛰어난 내부식성으로 기존의 재료에 비해 많은 장점을 갖고 있으나, 이러한 재료의 정확한 특성 파악 및 이를 사용한 구족물의 거동의 정확한 분석의 어려움으로 복합재료의 적용이 활발히 이루어지지 못하고 있는 실정이며, 이러한 요인이 복합재료를 토목구조물에 적용하는데 가장 큰 제한요소로 작용해 왔다. 본 연구에서는 복합재료 구조물의 해석을 위한 사전 연구로서, 현재 국내에서 사용되고 있는 GFRP 관로에 대한 재료특성 실험을 수행하여, 각각의 구성 적층재료별 재료 특성 및 전체 적층판에 대한 재료특성을 제공한다.

유체유동에 의한 복합재료 파이프의 안정성 해석 (Stability Analysis of Composite Material Pipes Conveying Fluid)

  • 최재운;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제11권8호
    • /
    • pp.314-321
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is Investigated. The theory of than walled beams is applied and transverse shear. rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transformed to an eigenvlaue problem which provides the Information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Variation of critical velocity of fluid with fiber angles and mass patios of fluid to pipe Including fluid is investigated.

  • PDF

철강-현무암 복합재료 파이프의 역학적 거동에 관한 연구 (A Study on the Mechanical Behaviour of Steel-basalt Composite Pipe)

  • 김종도;왕지석;윤희종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권4호
    • /
    • pp.401-409
    • /
    • 2007
  • Because of the various excellent characteristics of cast basalt materials. such as, anti-corrosion, anti-wearing, good hardness. high chemical stability, of which steel may not possess, the steel-basalt composite pipes are used in severe environments for compensating the defects of steel. However. without sufficient mechanical investigation prior to application. the basalt liners in steel-basalt composite pipes may be cracked and broken or the basalt liners are omitted from steel pipes in applications. In these cases, the merits of basalt materials may disappear and the basalt liners may not play their good roles as expected. Therefore, it is required that mechanical behavior of steel-basalt composite pipes and surrounding environments be fully examined before installation. The limit of bending moment with which steel-basalt composite pipe may safely endure is calculated and the limit curvature of the composite pipe in the safe range is presented in this paper. The temperature distributions and the thermal stresses are also computed and the limit difference of temperatures between inner and outer side of composite pipe is given together.

기하학적 비선형을 고려한 지하매설 복합재료 파이프의 해석 (Geometric Nonlinear Analysis of Underground Laminated Composite Pipes)

  • 김덕현;이인원;변문주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1988년도 가을 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1988
  • An analytical study was conducted using the Galerkin technique to determine the behaviour of thin fibre-reinforced and laminated composite pipes under soil pressure. Geometric nonlinearity and material linearity have been assumed. We assumed that vertical and lateral soil pressure are proportional to the depth and lateral displacement of the pipe respectively. And we also assumed that radial shear stress is negligible because the ratio of the thickness to the radius of pipe is very small. We, in this paper, discuss the effect of the number of layer, fiber orientation, and soil property.

  • PDF

Wave propagation and vibration of FG pipes conveying hot fluid

  • Zhang, Yi-Wen;She, Gui-Lin
    • Steel and Composite Structures
    • /
    • 제42권3호
    • /
    • pp.397-405
    • /
    • 2022
  • The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.

Effects of composite and metallic patch on the limit load of pressurized steel pipes elbow with internal defects under opening bending moment

  • Chaaben Arroussi;Azzedine Belalia;Mohammed Hadj Meliani
    • Structural Monitoring and Maintenance
    • /
    • 제10권3호
    • /
    • pp.221-242
    • /
    • 2023
  • Internal and external corrosion are common in pressure pipes used in a variety of industries, often resulting in defects that compromise their integrity. This economically and industrially significant problem calls for both preventive and curative technical solutions to guarantee the reliability of these structures. With this in mind, our study focuses on the influence of composite and metallic patch repairs on the limit loads of pipes, particularly elbows, the critical component of piping systems. To this end, we used the nonlinear extended finite element method (X-FEM) to study elbows, a priori corroded on the internal surface of the extrados section, then repaired with composite and metallic patches. In addition, the effect of the geometry of composite materials and metal patches was examined, in particular the effect of their thickness and material on the increase in limit loads of repaired structures. The results obtained provide information on the effectiveness and optimization of patch repair of corroded elbows, with the aim of increasing their service life.

지하매설 복합재료 파이프의 비선형 해석 (Non-linear Analysis of Underground Laminated Composite Pipes)

  • 김덕현;이인원;한봉구
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.112-115
    • /
    • 2004
  • An analytical study is conducted using the Galerkin technique to determine the behaviour of thin fibre-reinforced composite pipes under soil pressure. Geometric nonlinearity and material linearity are assumed. It is assumed that the vertical and lateral soil pressures are proportional to the depth and the lateral displacement of the pipe respectively. It is also assumed that the radial shear stress is negligible because the ratio of the thickness to the radius of the pipe is very small. The calculation results are compared with the finite element analysis result.

  • PDF

비회 운송용 유리섬유 복합관 개발 (Development of Composite Fly Ash Pipe)

  • 정규상;원삼용;문진성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.33-36
    • /
    • 2007
  • The majority of fly ash pipes in thermal power stations use steel pipes. This makes frequent replacement inevitable due to severe abrasion near the hot and curved section of pipes. Recently, there have been efforts to prevent this abrasion with lining techniques using ceramic or basalt on the inner wall of the pipe. This study uses composite and anti-wear material to maximize the anti-abrasion effects on the hot section of the pipe. The thickness of the abrasion layer was determined by the abrasion ratio of material found through the experiment; the thickness of the reinforcement layer was determined by micromechanics. Experiments were conducted on epoxy resins to test for heat and abrasion. Anti-abrasion test using particle impingement was intended to recreate realistic conditions when abrasion occurs within the hot section of an actual pipe. This study analyzes the abrasion ratio obtained from both the specimen experiment and from on-site measurement and provides evidence that a combination of composites and anti-wear agent can be used to create a fly ash pipe that is lower in costs and higher in quality than what is used currently.

  • PDF

GRP 연성관의 관강성 예측 (Pipe Stiffness Prediction of GRP Flexible Pipe)

  • 이영근;김선희;박준석;윤순종
    • 복합신소재구조학회 논문집
    • /
    • 제2권3호
    • /
    • pp.18-24
    • /
    • 2011
  • 이 연구에서 GRP 관의 하중-처짐 거동을 조사, 보고하였다. 지중매성 GRP관은 높은 내화학성, 높은 부식저항성, 경량성, 관표면의 매끄러움, 지반-관의 상호작용 고려에 따른 경제성 등의 탁원한 역학적, 물리적 특성들로 인해 건설현장에서 광범위하게 사용되고 있다. 지중에 매설되는 연성관을 설계하기 위해서는 ASTM D 2412 (2010)에 따라야 한다. ASTM D 2412 (2010)에 따라 설계할 경우, 관의 원강성 (PS)을 편평시험에 따라 먼저 결정해야 하는데, 이 시험이 귀찮고 노동력을 필요로 한다. 이러한 문제를 해결하기 위해 UTM에 설치된 형태의 GRP관의 하중-처짐 거동을 유한요소법에 따라 모사하였으며, 유한요소법에 의한 모사에는 재료의 탄성계수와 단면의 기하학적 치수 등 기초적인 자료를 사용하였다. 이와 같은 연구로부터, 관재료가 관의 단면내에서 비교적 일정하지 않음에도 불구하고 수직방향의 관변형이 3%와 5%가 발생할 경우, 편평시험과 수치해석적 연구 결과가 15%이내의 차이로 하중의 예측이 가능함을 알 수 있었다.

등분포 하중 작용시 적층각 변화에 따른 원통형 적층구조물의 좌굴 (Buckling of Laminated Cylindrical Composite Structures Subjected to Ply Angle Change Under External Uniform Pressure)

  • 나태수;염응준;한택희;강영종
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.349-355
    • /
    • 2004
  • The material such as steel or concrete has used to civil structures such as drainage pipes , but many problems such as corrosion in using steel and concrete pipes have happened. So, Necessity of developing new materials with high strength and anti-corrosion has been topic recently. One of this topics is study about ERP pipe. The strength of orthotropic FRP tends to be higher than it of isotropic FRP, the buckling problems can be significant in materials with high strength. thus, the study about bucking of orthotropic FRP-pipe is needed. In this study, buckling analysis of laminated cylindrical composite structures subjected In ply angle change under external uniform pressure was performed.

  • PDF