• 제목/요약/키워드: Composite Loss Rate

검색결과 76건 처리시간 0.027초

유역내 네가지 강수손실 성분들의 합성 (Combining Four Elements of Precipitation Loss in a Watershed)

  • 유주환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.200-204
    • /
    • 2012
  • In engineering hydrology, an estimation of precipitation loss is one of the most important issues for successful modeling to forecast flooding or evaluate water resources for both surface and subsurface flows in a watershed. An accurate estimation of precipitation loss is required for successful implementation of rainfall-runoff models. Precipitation loss or hydrological abstraction may be defined as the portion of the precipitation that does not contribute to the direct runoff. It may consist of several loss elements or abstractions of precipitation such as infiltration, depression storage, evaporation or evapotranspiration, and interception. A composite loss rate model that combines four loss rates over time is derived as a lumped form of a continuous time function for a storm event. The composite loss rate model developed is an exponential model similar to Horton's infiltration model, but its parameters have different meanings. In this model, the initial loss rate is related to antecedent precipitation amounts prior to a storm event, and the decay factor of the loss rate is a composite decay of four losses.

  • PDF

콘크리트 장기변형의 구속계수와 선압축력의 손실률 (Restraint Coefficient of Long-Term Deformation and loss Rate of Pre-Compression for Concrete)

  • 연정흠;주낙친
    • 콘크리트학회논문집
    • /
    • 제14권4호
    • /
    • pp.521-529
    • /
    • 2002
  • 콘크리트의 크리프와 건조수축에 의한 장기변형의 일부가 구속되는 합성단면에 대해 콘크리트에 발생되는 잔류응력과 이로 인한 콘크리트 단면에 선압축력의 손실을 계산하기 위해 콘크리트 장기변형의 구속계수가 유도되었으며, 선압축력의 손실률을 계산하기 위한 식을 제안하였다. 제안된 구속계수는 재령수정 유효탄성계수가 적용된 환산단면특성으로부터 계산되며, 복잡한 형태의 합성단면에 대해서도 쉽게 적용될 수 있다. 기존 설계기준에서 콘크리트의 장기변형과 관련된 조항을 검토하기 위해서 도로설계편람의 일반 합성단면에 대해 이 구속계수와 선압축력의 손실 계산식이 적용되었다. 부정정력과 신축이음량의 계산에 적용되는 건조수축변형률 $150 ~ 200$\times$10^{-6}$ 은 장기변형의 구속정도가 적은 경우에 과소 계산될 수 있으며, 잔류응력의 계산에 는 적용되는 $180$\times$10^{-6}$ 은 비정상적으로 작은 값이다. 이 논문에서 적용된 PSC 합성단면에 대한 도로교 설계기준의 손실률 16.3%는 ACI 209에 대해서는 안전측으로 계산되었으나 Eurocode 2에 대해서는 안전을 보장할 수 없었다. 강합성 단면의 콘크리트 바닥판에 일반 보강철근의 긴장에 의해 선압축력이 도입되면 철근비의 증가로 긴장에 의한 경우보다 상당히 큰 손실이 발생되었으며, 강재거더의 구속에 의해 긴장된 보강재 선인장력의 손실은 감소한 반면에, 콘크리트 선압축력의 손실은 증가하였다.

팽창흑연을 사용한 복합재료의 난연 특성에 관한 연구 (A Study for the Fire Retardant-Characteristics of Expandable Graphite Composite Materials)

  • 전관옥;이동호
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.28-33
    • /
    • 2017
  • In this study, the composite material of expandable graphite was made to the material development for improving such as a composite material of the sandwich panels or material properties of a fire door and was tested by the ISO 1182, ISO 5660-1(Cone calorimeter Method). For the test, the composite material of expandable graphite, what the expandable graphite ratio was increased by respectively 0g~30g, was classified A1,A2, A3, A4, and made to the test specimens. Through cone calorimeter test, peak heat release rate(HRR) and total heat release(THR), expanded thickness and expansion rate of each composite material of expandable graphite, and fire prone crack and mass loss rate after burning was measured. Thus, the effect of the addition of the expandable graphite and whether is suitable for reference as a fire retardant, was analyzed. Consequently the correlation of THR and fire retardant performance rate was confirmed.

복합재료를 이용한 유동유체 환경하의 각종 구조물의 캐비테이션 침식손상의 최소화 방안 (Minimizing of Cavitation-Erosion Damage for Various Structures using Composites under the various Condition of Fluid Flow Systems)

  • 이정주;김찬공;김용직;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.227-233
    • /
    • 1999
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator (suggested by ASTM G-32, 20KHZ, 24{$mu}m$).The main results obtained are summarized as follows ; (1) The maximum erosion rate by cavitation erosion in both of fresh-water and sea-water appeared to be proportioned to their hardness and tensile strength. (2) Cavitation weight loss and rate of cast iron in sea-water condition were greater (approximately 3 times) than that in distilled-water condition, however in case of stainless and brass the cavitation weight loss and their rates were not so different in both of their conditions. (3) Cavitation weight loss of composite materials were shown as below on this test, DuraTough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's fresh-water condition. (4) As the result of observation with digital camea of specimens, the main tendency of cavitation erosion for metals, was that small damaged holes causing by cavitation e개sion was appeared with radial pattern, and composites materials was that small damaged holes were appeared randomly.

  • PDF

프리스트레스트 콘크리트 합성단면에 도입되는 추가 긴장력 설계와 저항모멘트 평가 (Design of Additional Tendon Force and Evaluation of Resistant Moment for Prestressed Concrete Composite Section)

  • 연정흠;김도균
    • 콘크리트학회논문집
    • /
    • 제16권3호
    • /
    • pp.335-344
    • /
    • 2004
  • 이 논문에서는 프리캐스트 콘크리트와 현장타설 콘크리트 그리고 긴장된 강재와 긴장되지 않은 강재 등으로 구성되는 합성단면에서 콘크리트 장기변형의 내부구속에 의한 잔류응력과 긴장력 손실을 해석하였다. 이 해석결과로부터 사용 중에 도입되는 추가 긴장력으로 합성거더를 보강하는 경우에 필요한 추가 긴장력의 설계식과 저항모멘트 평가식이 제안되었다. 제안된 식은 일차 긴장력의 손실률이 설계규준의 일괄손실 등에 의해 과대평가되는 경우에 허용응력으로부터 결정되는 추가 긴장력 또한 과대평가 될 수 있음을 보여준다. 일반적으로 많이 사용되는 AASHTO Type 5 거더의 합성단면에 대해 이 논문의 해석방법을 적용 및 검토하였다. 프리캐스트 콘크리트 거더에 추가 긴장력이 도입되는 경우 일차 긴장력과 추가 긴장력의 손실률은 합성거더에 도입되는 경우보다 작았으나, 저항모멘트는 합성거더에 추가 긴장력이 도입되는 경우 상당히 증가하였다. 합성거더에 도입된 추가 긴장력의 보강효과는 매우 우수하였다.

유체 환경하에서의 고분자 기지 복합재료와 금속재의 캐비테이션 침식 특성 (Cavitation-Erosion Characteristics between Polymer Based Composites and Metals under the Various Condition of Fluid Systems)

  • 김윤해;손영준;엄수현;이정주
    • 대한기계학회논문집A
    • /
    • 제27권3호
    • /
    • pp.363-371
    • /
    • 2003
  • This study is mainly concerned with phenomenon of cavitation-erosion on the several materials and corrosive liquids which were applied with vibrator(suggested by ASTM G 32, 20KHz, 50$mu extrm{m}$). The maximum erosion rate by cavitation erosion in both of distilled water and sea water appeared to be proportioned to their hardness and tensile strength. Cavitation weight loss and rate of cast iron in sea water condition were greater(approximately 3 times) than that in distilled water condition, however in case of stainless steel and brass the cavitation weight loss of composite materials were not so different in both of their conditions. Cavitation weight loss of composite materials were shown as below on this test, Duratough DL : Weight loss in sea-water condition were greater (approximately 2.3 times) than it's distilled water condition. The main tendency of cavitation erosion for metals appeared that small damaged holes causing by cavitation erosion was observed with radial pattern. On the other hand, the tendency for composites appeared that small damaged holes were observed randomly.

Survival rates against fracture of endodontically treated posterior teeth restored with full-coverage crowns or resin composite restorations: a systematic review

  • Suksaphar, Warattama;Banomyong, Danuchit;Jirathanyanatt, Titalee;Ngoenwiwatkul, Yaowaluk
    • Restorative Dentistry and Endodontics
    • /
    • 제42권3호
    • /
    • pp.157-167
    • /
    • 2017
  • This systematic review aims to summarize the current clinical studies that investigated survival rates against fracture of endodontically treated posterior teeth restored with crowns or resin composite restorations. Literature search were performed using keywords. Publications from 1980 to 2016 were searched in PubMed, ScienceDirect, ISI Web of SCIENCE, MEDLINE, and SCOPUS. Included studies were selected based on inclusion and exclusion criteria. Three clinical studies were included: 1 randomized controlled trial and 1 prospective and 1 retrospective cohort studies. Pooled survival rates ranged from 94%-100% and 91.9%-100% for crowns and resin composite, respectively. The majority of teeth had no more than 3 surface loss of tooth structure. The studies included were heterogeneous, and were not appropriate for further meta-analysis. Current evidence suggested that the survival rates against the fracture of endodontically treated posterior teeth restored with crowns or resin composites were not significantly different in the teeth with minimum to moderate loss of tooth structure.

다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구 (Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding)

  • 김태용;이정현;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

Retrospective study of fracture survival in endodontically treated molars: the effect of single-unit crowns versus direct-resin composite restorations

  • Kanet Chotvorrarak;Warattama Suksaphar;Danuchit Banomyong
    • Restorative Dentistry and Endodontics
    • /
    • 제46권2호
    • /
    • pp.29.1-29.11
    • /
    • 2021
  • Objectives: This study was conducted to compare the post-fracture survival rate of endodontically treated molar endodontically treated teeth (molar ETT) restored with resin composites or crowns and to identify potential risk factors, using a retrospective cohort design. Materials and Methods: Dental records of molar ETT with crowns or composite restorations (recall period, 2015-2019) were collected based on inclusion and exclusion criteria. The incidence of unrestorable fractures was identified, and molar ETT were classified according to survival. Information on potential risk factors was collected. Survival rates and potential risk factors were analyzed using the Kaplan-Meier log-rank test and Cox regression model. Results: The overall survival rate of molar ETT was 87% (mean recall period, 31.73 ± 17.56 months). The survival rates of molar ETT restored with composites and crowns were 81.6% and 92.7%, reflecting a significant difference (p < 0.05). However, ETT restored with composites showed a 100% survival rate if only 1 surface was lost, which was comparable to the survival rate of ETT with crowns. The survival rates of ETT with composites and crowns were significantly different (97.6% vs. 83.7%) in the short-term (12-24 months), but not in the long-term (> 24 months) (87.8% vs. 79.5%). Conclusions: The survival rate from fracture was higher for molar ETT restored with crowns was higher than for ETT restored with composites, especially in the first 2 years after restoration. Molar ETT with limited tooth structure loss only on the occlusal surface could be successfully restored with composite restorations.

탄소섬유 강화 Cu 기지 금속 복합재료의 Squeeze Cast 조직 및 내마멸특성 (Microstructure and Wear Properties of Squeeze Cast Carbon Fiber/Copper Alloy Metal Matrix Composite)

  • 김남수;지동철;조경목;박익민
    • 한국주조공학회지
    • /
    • 제12권3호
    • /
    • pp.238-247
    • /
    • 1992
  • A carbon fiber(CF) reinforced Cu-10%Sn alloy matrix composite was successfully fabricated by squeeze casting method employing preheated graphite mold and proper process controlling factors. The matrix solidification microstructure of the Cu-10%Sn/CF composite reveals ${\alpha}-dendrite$ and ${\alpha}+{\delta}$ eutectoid. To compare the squeeze cast Cu-10%Sn/CF compostie with PM route fabricated Cu-graphite composites for electric contact material, mechanical wear and electrical arc wear tests were performed. Mechanical wear rate of the Cu-10%Sn/CF is much lower than that of the Cu-graphite composite. Weight loss with a variation of contact number in electrical arc wear tests shows a similar trend between the squeeze cast Cu-10%Sn/CF and PM Cu-graphite composites.

  • PDF