• 제목/요약/키워드: Composite Index

검색결과 743건 처리시간 0.023초

Computation of mixed-mode stress intensity factors in functionally graded materials by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.43-51
    • /
    • 2019
  • This paper is concerned with the numerical calculation of mixed-mode stress intensity factors (SIFs) of 2-D isotropic functionally graded materials (FGMs) by the natural element method (more exactly, Petrov-Galerkin NEM). The spatial variation of elastic modulus in non-homogeneous FGMs is reflected into the modified interaction integral ${\tilde{M}}^{(1,2)}$. The local NEM grid near the crack tip is refined, and the directly approximated strain and stress fields by PG-NEM are enhanced and smoothened by the patch recovery technique. Two numerical examples with the exponentially varying elastic modulus are taken to illustrate the proposed method. The mixed-mode SIFs are parametrically computed with respect to the exponent index in the elastic modulus and external loading and the crack angle and compared with the other reported results. It has been justified from the numerical results that the present method successfully and accurately calculates the mixed-mode stress intensity factors of 2-D non-homogeneous functionally graded materials.

Effect of distribution shape of the porosity on the interfacial stresses of the FGM beam strengthened with FRP plate

  • Rabia, Benferhat;Daouadji, Tahar Hassaine;Abderezak, Rabahi
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.601-609
    • /
    • 2019
  • The effect of the porosity and its distribution shape on the normal and shear interfacial stresses of the FGM beam strengthened with FRP plate subjected to a uniformly distributed load are investigated analytically in the present paper. Basically, the governing equations of FGM beams with porosity strengthened with composite plates are identical to the ones without porosity. Nonetheless, when the effect of the porosity and its distribution shape are taken into account, the rule of mixture was reformulated to assess the material characteristics with the porosity phases and its distribution shape. This work discusses the influence of the gradient index, the porosity and its distribution shape on the interfacial stresses.

Sawdust reinforced polybenzoxazine composites: Thermal and structural properties

  • Garigipati, Ravi Krishna Swami;Malkapuram, Ramakrishna
    • Advances in materials Research
    • /
    • 제9권4호
    • /
    • pp.311-321
    • /
    • 2020
  • In this study, Mangifera Indica tree sawdust reinforced bisphenol-A aniline based benzoxazine composites were prepared by varying the sawdust from 20 wt% to 45 wt%. Thermogravimetric analysis of composites revealed excellent compatibility between polybenzoxazine and sawdust from the remarkable growth in char yield from 22% (neat resin) to 36% (for highly filled) and glass transition temperature from 151 to 165℃. Ultimate weight loss of the composites evaluated from the Derivatives of TG plots. Limiting oxygen index values of the composites reported considerable growth i.e.,from 28 to 32 along with the increase in filler content. Differential scanning calorimetry results showed that sawdust particles have an insignificant effect on curing temperature (219℃) for the raise in sawdust content. Structure of the sawdust, benzoxazine monomer, polybenzoxazine and composites were studied using Fourier transformation infrared spectroscopy. Overall, polybenzoxazine composites with sawdust as filler showed improved thermal properties when compared with pure polybenzoxazine.

On propagation of elastic waves in an embedded sigmoid functionally graded curved beam

  • Zhou, Linyun;Moradi, Zohre;Al-Tamimi, Haneen M.;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.17-31
    • /
    • 2022
  • This investigation studies the characteristics of wave dispersion in sigmoid functionally graded (SFG) curved beams lying on an elastic substrate for the first time. Homogenization process was performed with the help of sigmoid function and two power laws. Moreover, various materials such as Zirconia, Alumina, Monel and Nickel steel were explored as curved beams materials. In addition, curved beams were rested on an elastic substrate which was modelled based on Winkler-Pasternak foundation. The SFG curved beams' governing equations were derived according to Euler-Bernoulli curved beam theory which is known as classic beam theory and Hamilton's principle. The resulted governing equations were solved via an analytical method. In order to validate the utilized method, the obtained outcomes were compared with other researches. Finally, the influences of various parameters, including wave number, opening angle, gradient index, Winkler coefficient and Pasternak coefficient were evaluated and indicated in the form of diagrams.

Renovation of steel beams using by imperfect functionally graded materials plate

  • Daouadji, Tahar Hassaine;Abderezak, Rabahi;Rabia, Benferhat;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.851-860
    • /
    • 2021
  • In this paper, a new approach of interface stress analysis in steel beam strengthened by porous FGM (Functionally Graded Materials) is presented to calculate the shear stress in the hybrid steel beam and loaded by a uniformly distributed load. The results show that there exists a high concentration of shear stress at the ends of the imperfect FGM, which might result in premature failure of the strengthening scheme at these locations. A parametric study has been conducted to investigate the sensitivity of interface behavior to parameters such as the rigidity of FGM plate (degree of homogeneity), the porosity index of FGM and the thickness of adhesive all were found to have a marked effect on the magnitude of maximum shear stress in the FGM member. we can conclude that the new approach is general in nature and may be applicable to all kinds of materials.

A new solution for dynamic response of FG nonlocal beam under moving harmonic load

  • Hosseini, S.A.H.;Rahmani, O.;Bayat, S.
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.185-200
    • /
    • 2022
  • A Closed-form solution for dynamic response of a functionally graded (FG) nonlocal nanobeam due to action of moving harmonic load is presented in this paper. Due to analyzing in small scale, a nonlocal elasticity theory is utilized. The governing equation and boundary conditions are derived based on the Euler-Bernoulli beam theory and Hamilton's principle. The material properties vary through the thickness direction. The harmonic moving load is modeled by Delta function and the FG nanobeam is simply supported. Using the Laplace transform the dynamic response is obtained. The effect of important parameters such as excitation frequency, the velocity of the moving load, the power index law of FG material and the nonlocal parameter is analyzed. To validate, the results were compared with previous literature, which showed an excellent agreement.

Application of the exact spectral element method in the analysis of the smart functionally graded plate

  • Farhad Abad;Jafar Rouzegar;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.297-313
    • /
    • 2023
  • This study aims to extend the application of the spectral element method (SEM) to wave propagation and free vibration analysis of functionally graded (FG) plates integrated with thin piezoelectric layers, plates with tapered thickness and structure on elastic foundations. Also, the dynamic response of the smart FG plate under impact and moving loads is presented. In this paper, the dynamic stiffness matrix of the smart rectangular FG plate is determined by using the exact dynamic shape functions based on Mindlin plate assumptions. The low computational time and results' independence with the number of elements are two significant features of the SEM. Also, to prove the accuracy and efficiency of the SEM, results are compared with Abaqus simulations and those reported in references. Furthermore, the effects of boundary conditions, power-law index, piezoelectric layers thickness, and type of loading on the results are studied.

Nonlinear resonances of nonlocal strain gradient nanoplates made of functionally graded materials considering geometric imperfection

  • Jia-Qin Xu;Gui-Lin She;Yin-Ping Li;Lei-Lei Gan
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.795-811
    • /
    • 2023
  • When studying the resonance problem of nanoplates, the existing papers do not consider the influences of geometric nonlinearity and initial geometric imperfection, so this paper is to fill this gap. In this paper, based on the nonlocal strain gradient theory (NSGT), the nonlinear resonances of functionally graded (FG) nanoplates with initial geometric imperfection under different boundary conditions are established. In order to consider the small size effect of plates, nonlocal parameters and strain gradient parameters are introduced to expand the assumptions of the first-order shear deformation theory. Subsequently, the equations of motion are derived using the Euler-Lagrange principle and solved with the help of perturbation method. In addition, the effects of initial geometrical imperfection, functionally graded index, strain gradient parameter, nonlocal parameter and porosity on the nonlinear forced vibration behavior of nanoplates under different boundary conditions are discussed.

Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads

  • Chinnapandi, Lenin Babu Mailan;Pitchaimani, Jeyaraj;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.829-843
    • /
    • 2022
  • This manuscript work presents a comprehensive continuum model capable to investigate the effect of porosity on vibro-acoustic behaviour of functionally graded (FG) beams resting on an elastic foundation subjected to thermal and mechanical loadings. Effects of uniform temperature rise and edge compressive load on the sound radiation characteristics are studied in a comparative manner. The numerical analysis is carried out by combining finite element method with Rayleigh's integral. Detailed parametric studies are accomplished, and influences of power law index, porosity volume, porosity distribution and boundary conditions on the vibro-acoustic response characteristics are analyzed. It is found that the vibro-acoustic response under mechanical edge compression is entirely different compared to from that under the thermal load. Furthermore, nature of grading of porosity affects the sound radiation behaviour for both the loads. The proposed model can be used to obtain the suppression performance of vibration and noise FG porous beams under thermal and mechanical loads.

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • 제51권2호
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.