• Title/Summary/Keyword: Composite Degree

Search Result 755, Processing Time 0.032 seconds

Study on Structural Performance of Two Seam Cold-Formed Square CFT Column to Beam Connections with Internal Diaphragm (2-Seam 냉간성형 각형 CFT 기둥-보 내다이아프램 접합부의 구조성능에 관한 연구)

  • Oh, Heon-Keun;Kim, Sun-Hee;Choi, Young-Hwan;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.27-37
    • /
    • 2012
  • The construction of a moment connection for a rectangular hollow section (RHS) column and a H-shaped beam is difficult because the RHS is a closed section. When a inner diaphragm is used for such a connection, in general, it is installed after cutting the HSS columns, which results in increased construction work. This paper suggests a new fabrication method to overcome such problems: An inner diaphragm is welded to inside a C-shaped section first, and then a column is fabricated by welding two C-shaped sections. This fabrication method is superior to a classic method in terms of constructibility. An experimental and a numerical study using Ansys 9.0 were performed in order to compare the strength of connections with respect to the presence of concrete, the corner shape of diaphragm, and the axis of loading. The experimental results including initial stiffness and ultimate loads are reported and the analytical results including load transfer mechanism, degree of stress concentration, and strain distribution are also reported.

Dental Properties of Hydroxyapatite Filled Polymer Composite (수산화인회석이 충전된 고분자 복합체의 치과적 물성)

  • Kim Oh-Young;Seo Ki-Taek
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.135-139
    • /
    • 2006
  • To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.

PARTICLE SIZE-DEPENDENT PULVERIZATION OF B4C AND GENERATION OF B4C/STS NANOPARTICLES USED FOR NEUTRON ABSORBING COMPOSITES

  • Kim, Jaewoo;Jun, Jiheon;Lee, Min-Ku
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.675-680
    • /
    • 2014
  • Pulverization of two different sized micro-$B_4C$ particles (${\sim}10{\mu}m$ and ${\sim}150{\mu}m$) was investigated using a STS based high energy ball milling system. Shapes, generation of the impurities, and reduction of the particle size dependent on milling time and initial particle size were investigated using various analytic tools including SEM-EDX, XRD, and ICP-MS. Most of impurity was produced during the early stage of milling, and impurity content became independent on the milling time after the saturation. The degree of particle size reduction was also dependent on the initial $B_4C$ size. It was found that the STS nanoparticles produced from milling is strongly bounded with the $B_4C$ particles forming the $B_4C$/STS composite particles that can be used as a neutron absorbing nanocomposite. Based on the morphological evolution of the milled particles, a schematic pulverization model for the $B_4C$ particles was constructed.

Analysis of Simple Supported Anisotropic Symmetric Laminated Cylindrical Shells (단순지지된 비등방성 대칭 적층 원통형 쉘의 해석)

  • Chai, Sang Youn;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.117-129
    • /
    • 1999
  • The objective of this study is to identify the advantages of composite materials and to investigate the behavior of the anisotropic symmetric laminated cylindrical shell structures. To analyze the anisotropic symmetric laminated cylindrical shell structures, the finite difference technique. that consists of forward, central and backward difference, is introduced. In this study, the degree of freedom consists of three displacements and, especially, two moments except twisting moment. It has the advantage of improving the accuracy for calculating the moments. All four edges are assumed to be simply supported. From the numerical results, it is proved that the finite difference technique can be used efficiently to analyze the anisotropic symmetric laminated cylindrical shells and gives a guide in deciding how to make use of the fiber angle the anisotropic symmetric laminated cylindrical shells.

  • PDF

Development of Carbon Nanotube-copper Hybrid Powder as Conductive Additive

  • Lee, Minjae;Ha, Seoungjun;Lee, Yeonjoo;Jang, Haneul;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.291-295
    • /
    • 2018
  • A conductive additive is prepared by dispersing multi-walled carbon nanotubes (MWCNTs) on Cu powder by mechanical milling and is distributed in epoxy to enhance its electrical conductivity. During milling, the MWCNTs are dispersed and partially embedded on the surface of the Cu powder to provide electrically conductive pathways within the epoxy-based composite. The degree of dispersion of the MWCNTs is controlled by varying the milling medium and the milling time. The MWCNTs are found to be more homogeneously dispersed when solvents (particularly, non-polar solvent, i.e., NMP) are used. MWCNTs gradually disperse on the surface of Cu powder because of the plastic deformation of the ductile Cu powder. However, long-time milling is found to destroy the molecular structure of MWCNTs, instead of effectively dispersing the MWCNTs more uniformly. Thus, the epoxy composite film fabricated in this study exhibits a higher electrical conductivity than 1.1 S/cm.

Cure Kinetics and Thermal Properties of Epoxy Resin Initiated by Methylanilinium Salts as a Latent Cationic Curing Agent (잠재성 양이온 경화제로서 methylanilinium 염에 의해 개시된 에폭시 수지의 경화 동력학 및 열적 특성)

  • 김택진;박수진;이재락
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.34-37
    • /
    • 2000
  • The effect of novel N-crotyl-N,N-dimethyl-4-methylanilinium hexafluroantimonate (CMH) curing agent on cure behavior and thermal properties of DGEBA epoxy cationic system was investigated. From DSC measurements of DGEBA/CMH system, it was shown that this system exhibits an excellent thermal latent characteristic in a given temperature and reveals complex cure behavior as indicated by multiple exotherms. The conversion and conversion rate of DGEBA/CMH system increased with increasing the concentration of initiator due to high activity of CMH. Viscoelastic properties during gel formation of DGEBA with CMH were investigated by rheological techniques under isothermal condition. The gel time obtained from the modulus crossover. point t(G')=G", was affected by high curing temperature and concentration of CMH, resulting in high degree of network formation in cationic polymerization. The thermal stabilities were discussed in terms of the activation energy for decomposition and thermal factors determined from TGA measurements.ents.

  • PDF

On the receding contact between a two-layer inhomogeneous laminate and a half-plane

  • Liu, Zhixin;Yan, Jie;Mi, Changwen
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.329-341
    • /
    • 2018
  • This paper considers the smooth receding contact problem between a homogeneous half-plane and a composite laminate composed of an inhomogeneously coated elastic layer. The inhomogeneity of the elastic modulus of the coating is approximated by an exponential function along the thickness dimension. The three-component structure is pressed together by either a concentrated force or uniform pressures applied at the top surface of the composite laminate. Both semianalytical and finite element analysis are performed to solve for the extent of contact and the contact pressure. In the semianalytical formulation, Fourier integral transformation of governing equations and boundary conditions leads to a singular integral equation of Cauchy-type, which can be numerically integrated by Gauss-Chebyshev quadrature to a desired degree of accuracy. In the finite element modeling, the functionally graded coating is divided into homogeneous sublayers and the shear modulus of each sublayer is assigned at its lower boundary following the predefined exponential variation. In postprocessing, the stresses of any node belonging to sublayer interfaces are averaged over its surrounding elements. The results obtained from the semianalytical analysis are successfully validated against literature results and those of the finite element modeling. Extensive parametric studies suggest the practicability of optimizing the receding contact peak stress and the extent of contact in multilayered structures by the introduction of functionally graded coatings.

Vibration and Stability Control of Rotating Composite Shafts via Collocated Piezoelectic Sensing and Actuation (압전감지기 및 압전작동기를 이용한 복합재료 회전축의 진동 및 안전성 제어)

  • Jeong, Nam-Heui;Kang, Ho-Shik;Yoon, Il-Sung;Song, Oh-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.152-159
    • /
    • 2007
  • A study on the control of free vibration and stability characteristics of rotating hollow circular shafts subjected to compressive axial forces is presented in this paper. Both passive structural tailoring technique and active control scheme via collocated piezoelectric sensing and actuation are used in the study Gyroscopic and centrifugal forces combined with the compressive axial force contribute to the occurrence of divergence and flutter instabilities of the rotating shaft. The dual methodology based on the passive and active control schemes shows a high degree of efficiency toward postponement of these instabilities and expansion of the domain of stability of the system. The structural model of the shaft is based on an advanced thin-walled beam structure that includes the non-classical effects of transverse shear, anisotropy of constituent materials and rotatory inertia.

Polycyclotriphosphazene Derivative Grafted and NanometerY2O3 Doped SPEEK Composite Membrane for DMFC

  • Li, Xia;Guo, Qiang;Zhang, Tianjiao;Qian, Junzhi;Tan, Xiaolin
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.625-633
    • /
    • 2013
  • A type of polycyclotriphosphazene derivative (PCTPD), hexasulfanilic acid polycyclotriphosphazene (HSACP) and HSACP grafting SPEEK, sulfonated poly[2-(petachloropolycyclotriphosphazene-oxy)] etheretherketone (SPPSACPEEK) were synthesized, which were characterized by FTIR and $^{31}P$ NMR. Then three types of composite membranes such as HSACP grafting SPEEK, HSACP blending SPEEK, and nano $Y_2O_3$ doping and HSACP grafting SPEEK, respectively, were continuously prepared by solution-casting method. Comparing to SPEEK membranes with different amount of HSACP grafted or blended, grafting 15 wt% HSACP and doping 10 wt% nano $Y_2O_3$ SPEEK membrane conducted outstanding overall behavior of proton conductivity reaching $3.18 {\times}10^{-2}$ S/cm at $90^{\circ}C$ which was merely junior to SPEEK with 15 wt% HSACP grafted, methanol permeability coefficient getting $9.46{\times}10^{-8}cm^2{\cdot}s^{-1}$, swelling degree of 20.9% and solid residue of 98.98% which was superior to all specimen.

Pseudo-dynamic test of the steel frame - Shear wall with prefabricated floor structure

  • Han, Chun;Li, Qingning;Jiang, Weishan;Yin, Junhong;Yan, Lei
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.431-445
    • /
    • 2016
  • Seismic behavior of new composite structural system with a fabricated floor was studied. A two-bay and three-story structural model with the scale ratio of 1/4 was consequently designed. Based on the proposed model, multiple factors including energy dissipation capacity, stiffness degradation and deformation performance were analyzed through equivalent single degree of freedom pseudo-dynamic test with different earthquake levels. The results show that, structural integrity as well as the effective transmission of the horizontal force can be ensured by additional X bracing at the bottom of the rigidity of the floor without concrete topping. It is proved that the cast-in-place floor in areas with high seismic intensity can be replaced by the prefabricated floor without pouring surface layer. The results provide a reliable theoretical basis for the seismic design of the similar structural systems in engineering application.