• Title/Summary/Keyword: Composite Context

Search Result 122, Processing Time 0.021 seconds

A Study of a Composite Sensor and Control Network and Its Test-bed for the Intelligent and Digital Home (지능형 디지탈홈을 위한 콤퍼짓 센서제어네트워크 및 테스트베드의 연구)

  • Lee, Kyou-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1687-1693
    • /
    • 2007
  • Advances in technologies of networking, chip integration, and embedded system have enabled sensor networks applicable to a wide range of areas. Sharing some common characteristics, sensor networks are thus diversified in features depending on their applications. An intelligent and digital home can be one area to establish a particular feature of sensor network. This paper proposes a composite sensor and control network, and discusses its applying to the next generation intelligent and digital home. Development results of the network and a test-bed as a virtual test environment are also presented. The proposed network can not only be efficiently applying to achieve new home intelligences but also provide a sound solution to maintenance and operations of home network or devices.

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

Thermo-oxidation behaviour of organic matrix composite materials at high temperatures

  • Cinquin, Jacques;Colin, Xavier;Fayolle, Bruno;Mille, Marion;Terekhina, Svetlana;Chocinski-Arnault, Laurence;Gigliotti, Marco;Grandidier, Jean-Claude;Lafarie-Frenot, Marie-Christine;Minervino, Matteo;Cluzel, Christophe;Daghia, Federica;Ladeveze, Pierre;Zhang, Fangzouh
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.171-195
    • /
    • 2016
  • The present paper is a review of the main activities carried out within the context of the COMPTINN' program, a joint research project founded by a FUI program (Fonds $Unifi{\acute{e}}s$ $Interminist{\acute{e}}riels$) in which four research teams focused on the thermo-oxidation behaviour of HTS-TACTIX carbon-epoxy composite at 'high' temperatures ($120^{\circ}C-180^{\circ}C$). The scientific aim of the COMPTINN' program was to better identify, with a multi-scale approach, the link between the physico-chemical mechanisms involved in thermo-oxidation phenomena, and to provide theoretical and numerical tools for predicting the mechanical behaviour of aged composite materials including damage onset and development.

Fiber Finite Element Mixed Method for Nonlinear Analysis of Steel-Concrete Composite Structures (강-콘크리트 합성구조물의 비선형해석을 위한 화이버 유한요소 혼합법)

  • Park, Jung-Woong;Kim, Seung-Eock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.789-798
    • /
    • 2008
  • The stiffness method provides a framework to calculate the structural deformations directly from solving the equilibrium state. However, to use the displacement shape functions leads to approximate estimation of stiffness matrix and resisting forces, and accordingly results in a low accuracy. The conventional flexibility method uses the relation between sectional forces and nodal forces in which the equilibrium is always satisfied over all sections along the element. However, the determination of the element resisting forces is not so straightforward. In this study, a new fiber finite element mixed method has been developed for nonlinear anaysis of steel-concrete composite structures in the context of a standard finite element analysis program. The proposed method applies the Newton method based on the load control and uses the incremental secant stiffness method which is computationally efficient and stable. Also, the method is employed to analyze the steel-concrete composite structures, and the analysis results are compared with those obtained by ABAQUS. The comparison shows that the proposed method consistently well predicts the nonlinear behavior of the composite structures, and gives good efficiency.

Performance Based Fire Engineering in the UK

  • Plank, Roger
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • This paper reviews the recent developments in fire engineering and the design approaches which are being used in the UK, compared with traditional prescriptive solutions. The research background which has underpinned this is briefly summarised, and the benefits of these more advanced methods are discussed. The focus is on structural fire engineering, but some consideration of modelling fires is also included. Some of the more commonly used design tools are discussed, together with the relative benefits they offer. The use of these more advanced approaches is then outlined in the context of which building types might be most suitable, and a number of case studies are included to illustrate this. Likely future developments are also discussed.

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity

  • Said, Samia M.;Abd-Elaziz, Elsayed M.;Othman, Mohamed I.A.
    • Steel and Composite Structures
    • /
    • v.36 no.6
    • /
    • pp.617-629
    • /
    • 2020
  • The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.

Design and Implementation of Mobile Contents Recommendation System Using Reliability in Composite Context Environments (복합 상황 환경에서 신뢰도를 이용한 모바일 콘텐츠 추천 시스템의 설계 및 구현)

  • Lee, nak-gyu;Bok, kyeong-soo;Yoo, jae-soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.91-92
    • /
    • 2011
  • 최근 유비쿼터스 시대의 도래와 함께 모바일 기기를 이용한 서비스 수요가 급격히 증가함에 따라 대량의 콘텐츠와 서비스를 효율적으로 제공하기 위한 연구가 진행되고 있다. 이를 위해 사용자의 상황 정보를 이용하여 개인화 서비스를 제공하기 위한 다양한 모델들이 제시되고 있다. 하지만 이러한 모델들은 상황에 따른 사용자의 선호도 혹은 컨텍스트를 자체적으로 수집/분석하여 추천한다는 점에서 신뢰도가 높은 콘텐츠를 추천하지 못하거나 이를 검증할 수 없다는 문제점이 있다. 본 논문에서는 시공간 복합 상황 정보와 사용자의 컨텍스트를 활용한 분석과 함께 콘텐츠와 서비스를 제공하는 외부 CP(Contents Provider)가 Open API로 제공하는 신뢰도에 따라 소비 가치가 높은 최적의 콘텐츠를 제공할 수 있는 추천 시스템을 제안한다.

  • PDF

Air blast load generation for simulating structural response

  • Guzas, Emily L.;Earls, Christopher J.
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.429-455
    • /
    • 2010
  • The current research presents a detailed methodology for generating air blast loading for use within a finite element context. Parameters describing blast overpressure loading on a structure are drawn from open literature sources and incorporated within a blast load generation computer code developed for this research. This open literature approach lends transparency to the details of the blast load modeling, as compared with many commonly used approaches to blast load generation, for which the details are not publicly available. As a demonstration, the load generation code is used with the finite element software LS-DYNA to simulate the response of a steel plate and girder subjected to explosions modeled using these parameters as well as blast parameters from other sources.

Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory

  • Abdulrazzaq, Mohammed Abdulraoof;Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.147-157
    • /
    • 2020
  • In the present research, thermo-elastic buckling of small scale functionally graded material (FGM) nano-size plates with clamped edge conditions rested on an elastic substrate exposed to uniformly, linearly and non-linearly temperature distributions has been investigated employing a secant function based refined theory. Material properties of the FGM nano-size plate have exponential gradation across the plate thickness. Using Hamilton's rule and non-local elasticity of Eringen, the non-local governing equations have been stablished in the context of refined four-unknown plate theory and then solved via an analytical method which captures clamped boundary conditions. Buckling results are provided to show the effects of different thermal loadings, non-locality, gradient index, shear deformation, aspect and length-to-thickness ratios on critical buckling temperature of clamped exponential graded nano-size plates.