Browse > Article
http://dx.doi.org/10.12989/scs.2020.36.6.617

Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity  

Said, Samia M. (Department of Mathematics, Faculty of Science, Zagazig University)
Abd-Elaziz, Elsayed M. (Ministry of Higher Education, Zagazig Higher Institute of Eng. & Tech.)
Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University)
Publication Information
Steel and Composite Structures / v.36, no.6, 2020 , pp. 617-629 More about this Journal
Abstract
The purpose of this paper is to depict the effect of rotation and initial stress on a magneto-thermoelastic medium with diffusion. The problem discussed within memory-dependent derivative in the context of the three-phase-lag model (3PHL), Green-Naghdi theory of type III (G-N III) and Lord and Shulman theory (L-S). Analytical expressions of the considered variables are obtained by using Laplace-Fourier transforms technique. Numerical results for the field quantities given in the physical domain and illustrated graphically in the absence and presence of a magnetic field, initial stress as well as the rotation. The differences in variable thermal conductivity are also presented at different parameter of thermal conductivity. The numerical results of the field variables are presented graphically to discuss the effect of various parameters of interest. Some special cases are also deduced from the present investigation.
Keywords
diffusion; rotation; initial stress; variable thermal conductivity; memory-dependent derivative;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Mondal, S., Sur, A. and Kanoria, M. (2019), "Tranient response in a piezoelastic medium due to the influence of magnetic field with memory-dependent derivative", Acta Mechanica, 230, 2325-2338. https://doi.org/10.1007/s00707-019-02380-4.   DOI
2 Othman, M.I.A. (2005), "Generalized electromagneto-thermoelastic plane waves by thermal shock problem in a finite conductivity half-space with one relaxation time", Multi. Model. Mater. Struct., 1(3), 231-250. http://dx.doi.org/10.1163/157361105774538557.   DOI
3 Othman, M.I.A. and Song, Y.Q. (2009), "The effect of rotation on 2-D thermal shock problems for a generalized magneto-thermoelasticity half-space under three theories", Multi. Model. Mater. Struct., 5(1), 43-58.   DOI
4 Othman, M.I.A. and Said, S.M. (2012), "The effect of rotation on two-dimensional problem of a fibre-reinforced thermoelastic with one relaxation time", Int. J. Thermophys., 33(2) 160-171. DOI 10.1007/s10765-011-1109-5.   DOI
5 Othman, M.I.A. and Said, S.M. (2013), "Plane waves of a fiber-reinforcement magneto-thermoelastic comparison of three different theories", Int. J. Thermophys., 34, 366-383. DOI 10.1007/s10765-013-1417-z.   DOI
6 Kumar, R. and L. Rani. (2005), "Deformation due to inclined load in thermoelastic half- space with voids", Arch. of Mech., 57, 7-24.
7 Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: Concept of the memory-dependent derivative", Comput. Math. Appl., 62, 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028.   DOI
8 Yu, Y.J., Hu, W. and Tian, X.G. (2014), "A novel generalized thermoelasticity model based on memory-dependent derivative", Int. J. Eng. Sci., 81, 123-134. DOI 10.1016/j.ijengsci.2014.04.014.   DOI
9 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389   DOI
10 Othman, M.I.A., Sarkar, N. and Atwa, S.Y. (2013), "Effect of fractional parameter on plane waves of generalized thermo- magneto-elastic diffusion with reference temperature dependent elastic medium", Comput. Math. with Appl., 65(7), 1103-1118. doi:10.1016/j.camwa.2013.01.047.   DOI
11 Othman, M.I.A. and Said, S.M. (2014), "2-D problem of magneto-hermoelasticity fiber-reinforced medium under temperature-dependent properties with three-phase-lag theory", Meccanica, 49(5), 1225-1243. DOI 10.1007/s11012-014-9879-z.   DOI
12 Bhatti, M.M., Ellahi, R., Zeeshan, A., Marin, M. and Ijaz, N. (2019), "Numerical study of heat transfer and Hall current impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties", Mod. Phys. Lett. B, 33(35), Art. No. 1950439. DOI: 10.1142/S0217984919504396.
13 Caputo, M. (1971a), "Vibrations on an infinite viscoelastic layer with a dissipative memory", J. Acoust. Soc. Am., 56, 897-904.   DOI
14 Caputo, M. and Mainardi, F. (1971b), "A new dissipation model based on memory mechanism", Pure Appl. Geophys., 91, 134-147.   DOI
15 Caputo, M. and Mainardi, F. (1971c), "Linear model of dissipation in an elastic solid", La Rivista del Nuovo Cimento, 1, 161-198.   DOI
16 Povstenko, Y.Z. (2004), "Fractional heat conduction equation and associated thermal stress", J. Therm. Stress., 28, 83-102. DOI: 10.1093/qjmam/hbn016.   DOI
17 Deswal, S. and Kalkal, K.K. (2014), "Plane waves in a fractional order micropolar magneto-thermoelastic half-space", Wave Motion, 51(1), 100-113. https://doi.org/10.1016/j.wavemoti.2013.06.009.   DOI
18 Dogonchi, A.S. and Ganji, D.D. (2016), "Convection-radiationheat transfer study of moving fin with temperaturedependent thermal conductivity, heat transfer coefficient and heat generation", Appl. Therm. Eng., 103, 705-712. https://doi.org/10.1016/j.applthermaleng.2016.04.121.   DOI
19 Gholinia, M., Hosseinzadeh, Kh. and Ganji, D.D. (2020), "Investigation of different base fluids suspend by CNTs hybrid nanoparticle over a vertical circular cylinder with sinusoidal radius", Case Studies in Therm. Eng., 21, 100666, https://doi.org/10.1016/j.csite.2020.100666.   DOI
20 Othman, M.I.A. and Mondal, S. (2020), "Memory dependent-derivative effect on wave propagation of micropolar thermo-elastic medium under pulsed laser heating with three theories", Int. J. Numer. Method. Heat Fluid Fl., 30(3), 1025-1046. DOI 10.1108/HFF-05-2019-0402.   DOI
21 Quintanilla, R. and Racke, R. (2008), "A note on stability in three- phase-lag heat conduction", Int. J. Heat Mass Transfer, 51, 24-29. https://doi.org/10.1080/014957390523741.   DOI
22 Roy Choudhuri, S.K. (2007), "On a thermoelastic three-phase-lag model", J. Therm. Stress., 30, 231-238. DOI: 10.1080/01495730601130919.   DOI
23 Riaz, A., Ellahi, R., Bhatti, M.M. and Marin, M. (2019), "Study of heat and mass transfer in the Eyring-Powell model of fluid propagating peristaltically through a rectangular compliant channel", Heat Transf Res, 50(16), 1539-1560. DOI: 10.1615/HeatTransRes.2019025622   DOI
24 Rostami, A.K., Hosseinzadeh, Kh. and Ganji, D.D. (2020), "Hydrothermal analysis of ethylene glycol nanofluid in a porous enclosure with complex snowflake shaped inner wall", Waves in Random and Complex Media, 1-18. DOI 10.1080/17455030.2020.1758358
25 Roy Chaudhuri, S.K. and Debnath, L. (1983), "Magneto-thermo- elastic plane waves in rotating media", Int. J. Eng. Sci., 21(2), 155-163. https://doi.org/10.1016/0020-7225(83)90007-1.   DOI
26 Sarkar, N. and Mondal, S. (2020), "Two-dimensional problem of two-temperature generalized thermoelasticity using memory-dependent heat transfer: an integral transform approach", Ind. J. Phys., in press. https://doi.org/10.1007/s12648-019-01639-9.
27 Othman, M.I.A. and Abd-Elaziz, E.M. (2017), "Effect of rotation on a micropolar magneto-thermoelastic medium with dual- phase-lag model under gravitational field", Microsystem Tech., 23(10), 4979-4987. DOI 10.1007/s00542-017-3295-y.   DOI
28 Said, S.M. and Othman, M.I.A. (2020), "The effect of gravity andhydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced", Struct. Eng. Mech., 74(3), 425-434. https://doi.org/10.12989/sem.2020.74.3.425.   DOI
29 Salehi, S., Nori, A., Hosseinzadeh, Kh. and Ganji, D.D. (2020), "Hydrothermal analysis of MHD squeezing mixture fluid suspended by hybrid nanoparticles between two parallel plates", Case Studies in Therm. Eng., 21, 100650, https://doi.org/10.1016/j.csite.2020.100650.   DOI
30 Schoenberg, M. and Censor, D. (1973), "Elastic waves in rotating Media", Quart. Appl. Math., 31(1), 115-125. https://www.jstor.org/stable/43636594.   DOI
31 Othman, M.I.A., Abouelregal, A.E. and S.M. Said, (2019), "The effect of variable thermal conductivity on an infinite fiber-reinforced thick plate under initial stress", J. Mech. Mater. Struct., 14(2), 277-293. dx.doi.org/10.2140/jomms.2019.14.277.   DOI
32 Hosseinzadeh, Kh., Asadi, A., Mogharrebi, A.R., Azari, M.E. and Ganji, D.D. (2020), "Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect", J. Therm. Anal. Calorimetry, 1-15. DOI 10.1007/s10973-020-09347-x
33 Hosseinzadeh, Kh., Mogharrebi, A.R., Asadi, A., Sheikhshahrokhdehkordi, M., Mousavisani, S. and Ganji, D.D. (2019), "Entropy generation analysis of mixture nanofluid (H2O/c2H6O2)-Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation", Int. J. Ambient Energy, 1-13. https://doi.org/10.1080/01430750.2019.1681294.
34 Hetnaraski, R.B. (1986), "Thermal Stresses", North-Holland, Amsterdam, 1, 391-396.
35 Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the solid under GN electromagnetic theory", Symmetry, 11(3), 413-430. https://doi.org/10.3390/sym11030413.   DOI
36 Hendy, M.H., El-Attar, S.I. and Ezzat, M.A. (2020), "On thermoelectric materials with memory-dependent derivative and subjected to a moving heat source", Microsys. Tech., 26, 595-608. https://doi.org/10.1007/s00542-019-04519-8.   DOI
37 Hosseinzadeh, Kh., Asadi, A., Mogharrebi, A.R., Khalesi, J., Mousavisani, S. and Ganji, D.D. (2019), "Entropy generation analysis of (CH2OH)2containing CNTs nanofluid flow under effect of MHD and thermal radiation", Case Studies in Therm. Eng., 14, 100482. https://doi.org/10.1016/j.csite.2019.100482.   DOI
38 Hosseinzadeh, Kh., Roghani, So., Asadi, A., Mogharrebi, A.R. and Ganji, D.D. (2020a), "Investigation of micropolar hybrid ferrofluid flow over a vertical plate by considering various base fluid and nanoparticle shape factor", Int. J. Numer. Method. Heat Fluid Fl., DOI 10.1108/HFF-02-2020-0095.
39 Al-Jamel, A., Al-Jamal, M.F. and El-Karamany, A.S. (2018), "A memory-dependent derivative model for damping in oscillatory systems", J. Vib. Control, 24(11), 2221-2229. https://doi.org/10.1177/1077546316681907.   DOI
40 Hosseinzadeh, Kh., Roghani, So., Mogharrebi, A.R., Asadi, A., Waqas, M. and Ganji, D.D. (2020b), "Investigation of crossfluid flow containing motile gyrotactic micro-organisms and nanoparticles over a three-dimensional cylinder", Alex. Eng. J., https://doi.org/10.1016/j.aej.2020.04.037.
41 Singh, S., Kumar, D. and Rai, K.N. (2014), "Convective-radiative fin with temperature dependent thermal conductivity, heat transfer coefficient and wavelength dependent surface emissivity", Propul. Power Res., 3(4), 207-221. https://doi.org/10.1016/j.jppr.2014.11.003.   DOI
42 Thomas, L. (1980), "Fundamentals of heat transfer", Prentice-Hall Inc, Englewood Cliffs.
43 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
44 Marin, M., Craciun, E.M. and Pop, N. (2016), "Considerations on mixed initial-boundary value problems for micropolar porous bodies", Dyn. Syst. Appl., 25(1-2), 175-196.