• 제목/요약/키워드: Composite Cantilever Beam

검색결과 120건 처리시간 0.026초

A general method of analysis of composite beams with partial interaction

  • Ranzi, G.;Bradford, M.A.;Uy, B.
    • Steel and Composite Structures
    • /
    • 제3권3호
    • /
    • pp.169-184
    • /
    • 2003
  • This paper presents a generic modelling of composite steel-concrete beams with elastic shear connection. It builds on the well-known seminal technique of Newmark, Siess and Viest, in order to formulate the partial interaction formulation for solution under a variety of end conditions, and lends itself well for modification to enable direct quantification of effects such as shrinkage, creep, and limited shear connection slip capacity. This application is possible because the governing differential equations are set up and solved in a fashion whereby inclusion of the kinematic and static end conditions merely requires a statement of the appropriate constants of integration that are generated in the solution of the linear differential equations. The method is applied in the paper for the solution of the well-studied behaviour of simply supported beams with partial interaction, as well as to provide solutions for a beam encastr$\acute{e}$ at its ends, and for a propped cantilever.

배전용 FRP 전주 설계 및 성능시험 (Performance Test and Design of Distribution FRP Pole)

  • 한동희;조한구;박기호;송일근;이웅선
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2001
  • This paper presents mechanical properties and weatherability of FRP pole used for a distribution line about high strength and good insulation properties. The experiment strength obtained in cantilever beam test are comparable to ES standards. The environmental factors, such as elevated temperatures, high humidity, and corrosive fluids, and ultraviolet(UV) rays, influence on the performance of Polymeric matrix composite.

  • PDF

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권4호
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.

홀로그래픽 간섭법을 이용한 편심하중에 의한 외팔보의 변형률분포 해석 (Strain analysis of cantilever beam under eccentric force using holographic interferometry)

  • 박승옥;김홍석;권혁홍;조동현
    • 한국광학회지
    • /
    • 제8권1호
    • /
    • pp.14-18
    • /
    • 1997
  • 홀로그래픽 간섭법을 이용하여 외팔보에 편심하중이 가해졌을 때 발생되는 변형을 해석하였다. 물체에 휨(bending)과 미소한 비틀림(torsion)의 복합변형이 발생될 때 사선의 홀로그래픽 간섭무늬를 얻었으며, 간섭무늬 개수와 경사도를 이용하여 변위분포함수를 근사적으로 구하여 간편하게 변형률분포를 해석할 수 있는 방법을 제시하였다. 자유단 근처에서의 최대 휨량이 9.7.+-.0.6.mu.m일 때, 고정단 부근에서 수직변형률의 최대값 e$_{x}$는 약 1.0 * $10^{-6}$, e$_{y}$ 는 약 -0.3 * $10^{-6}$이고, 전단변형률은 약 1.3 * $10^{-6}$으로 측정되었다. 본 방법의 신뢰성을 확인하기 위하여 FEM으로 변위 및 변형률을 이론적으로 해석하여 실험결과와 비교해 보았다.다.

  • PDF

Analysis on Stitched Mode I Specimen Using Spring Elements

  • Tapullima, Jonathan;Sim, Hyung Woo;Kweon, Jin Hwe;Choi, Jin Ho
    • Composites Research
    • /
    • 제32권2호
    • /
    • pp.102-107
    • /
    • 2019
  • Several studies related to reinforce composites structures in the through thickness direction have been developed along the years. As follows, in this study a new reinforced process is proposed based on previous experimental results using a novel stitching process in T-joints and one-stitched specimens. It was established the need to perform more analysis under standard test methods to obtain a better understanding. FEM analysis were compared after performed mode I interlaminar fracture toughness test, using different stitching patterns to analyze the through thickness strength with reference laminates without stitching. The stitching patterns were defined in $2{\times}2$ and $3{\times}3$, where the upper and lower head of the non-continuous stitching process (I-Fiber) has proven to influence in a higher through thickness strength of the laminate. In order to design the numerical model, cohesive parameters were required to define the surface to surface bonding elements using the cohesive zone method (CZM) and simulate the crack opening behavior from the double cantilever beam (DCB) test.

복합적층판의 층간파괴에 미치는 충격하중속도의 효과 (Effects of Impact Loading Rate on the Delamination Behavior of Composite Laminates)

  • 최낙삼
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1886-1895
    • /
    • 1999
  • The delamination behavior of multidirectional carbon-fiber/epoxy composite laminates under 10NA intermediate and high rates of test, up to rate of about 11.4m s has been investigated using the double cantilever beam specimens. The mode I loading under rates above l.0m/s showed considerable dynamic effects on the load-time curves and thus higher values of the average crack velocity than that expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Based on the assumption of constant flexural modulus, values of $G_{IC}$ at the crack initiation and arrest were decreased with an increase of the test rate up to 5.7m/s, but the maximum $G_{IC}$ was increased at 11.4m/s.

Piezoceramic d15 shear-induced direct torsion actuation mechanism: a new representative experimental benchmark

  • Berik, Pelin;Benjeddou, Ayech;Krommer, Michael
    • Smart Structures and Systems
    • /
    • 제12권5호
    • /
    • pp.483-499
    • /
    • 2013
  • A new piezoceramic $d_{15}$ shear-induced torsion actuation mechanism representative benchmark is proposed and its experimentations and corresponding 3D finite element (FE) simulations are conducted. For this purpose, a long and thin smart sandwich cantilever beam is dimensioned and built so that it can be used later for either validating analytical Saint Venant-type solutions or for analyzing arm or blade-based smart structures and systems applications. The sandwich beam core is formed by two adjacent rows of 8 oppositely axially polarized d15 shear piezoceramic patches, and its faces are dimensionally identical and made of the same glass fiber reinforced polymer composite material. Quasi-static and static experimentations were made using a point laser sensor and a scanning laser vibrometer, while the 3D FE simulations were conducted using the commercial software $ABAQUS^{(R)}$. The measured transverse deflection by both sensors showed strong nonlinear and hysteretic (static only) variation with the actuation voltage, which cannot be caught by the linear 3D FE simulations.

Time-dependent creep analysis of a functionally graded beam with trapezoidal cross section using first-order shear deformation theory

  • Mirzaei, Manouchehr Mohammad Hosseini;Loghman, Abbas;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • 제30권6호
    • /
    • pp.567-576
    • /
    • 2019
  • Time-dependent creep analysis of a rotating functionally graded cantilever beam with trapezoidal longitudinal cross section subjected to thermal and inertia loading is investigated using first-order shear deformation theory (FSDT). The model described in this paper is a simple simulation of a turbine blade working under creep condition. The material is a metal based composite reinforced by a ceramic where the creep properties of which has been described by the Sherby's constitutive model. All mechanical and thermal properties except Poisson's ratio are assumed to be variable longitudinally based on the volume fraction of constituent. The principle of virtual work as well as first order shear deformation theory is used to derive governing equations. Longitudinal distribution of displacements and stresses are investigated for various volume fractions of reinforcement. Method of successive elastic solution is employed to obtain history of stresses and creep deformations. It is found that stresses and displacements approach their steady state values after 40000 hours. The results presented in this paper can be used for selection of appropriate longitudinal distribution of reinforcement to achieve the desired stresses and displacements.

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.111-130
    • /
    • 2014
  • The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.

점탄성층을 삽입한 $0^0&90^0$ 섬유강화 복합재료의 감쇠계수에 대한 연구 (A Study on Material Damping of the $0^0&90^0$ Laminated Composite Sandwich Cantilever Beam inserted with Viscoelastic layer)

  • 임종휘;서윤종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.345-348
    • /
    • 2004
  • In this paper it is to establish a comprehensive model for predicting damping in sandwich Laminated composites on the basis of strain energy method. In this model, the effect of transverse shear on the material damping has been considered with in-plane stresses. Results showed that the viscoelastic core thickness in the sandwich beam and the Length of a beam have a high impact on the material damping. The transverse shear appears to be highly influenced by the damping behavior in $0^0$ laminated sandwiched composites. However, it is Little influenced by that in $90^0$ laminated sandwiched composites.

  • PDF