• Title/Summary/Keyword: Component response modification factor

Search Result 11, Processing Time 0.032 seconds

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Estimation of floor response spectra induced by artificial and real earthquake ground motions

  • Pu, Wuchuan;Xu, Xi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.377-390
    • /
    • 2019
  • A method for estimating the floor response spectra (FRS) of elastic structures under earthquake excitations is proposed. The method is established based on a previously proposed direct estimation method for single degree of freedom systems, which generally overestimates the FRS of a structure, particularly in the resonance period range. A modification factor is introduced to modify the original method; the modification factor is expressed as a function of the period ratio and is determined through regression analysis on time history analysis results. Both real and artificial ground motions are considered in the analysis, and it is found that the modification factors obtained from the real and artificial ground motions are significantly different. This suggests that the effect of ground motion should be considered in the estimation of FRS. The modified FRS estimation method is further applied to a 10-story building structure, and it is verified that the proposed method can lead to a good estimation of FRS of multi-story buildings.

Statistical Study of Ductility Factors for Elastic Perfectly Plastic SDOF Systems (탄소성 단자유도 구조물에 대한 연성계수의 통계적 분석)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.39-48
    • /
    • 2003
  • This paper present a summary of the results of statistical study of the ductility factor which is key component of response modification factor(R). To compute the ductility factor, a group of 1,860 ground motions recorded from various earthquake was considered. Based on the local site conditions at the recording station, ground motions were classified into four groups according to average shear wave velocity. Inleastic spectrum were computed for elastic perfectly plastic SDOF systems undergoing different level of inelastic deformation and period. Ductility factors were calculated by deviding elastic response spectrum by inelastic response spectrum. The influence f displacement ductility ratio, site condition, magnitude and epicentral distance on ductility factors were studied. The coefficient of variation was computed to evaluated the dispersion of ductility factors as the defined ratio of the standard deviation to the mean.

Evaluation of Seismic Design Parameters for Nonstructural Components Based on Coupled Structure-Nonstructural 2-DOF System Analysis (구조물-비구조요소 2자유도 결합시스템 해석을 통한 비구조요소 내진설계변수 평가)

  • Bae, Chang Jun;Lee, Cheol-Ho;Jun, Su-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.105-116
    • /
    • 2022
  • Seismic demand on nonstructural components (NSCs) is highly dependent on the coupled behavior of a combined supporting structure-NSC system. Because of the inherent complexities of the problem, many of the affecting factors are inevitably neglected or simplified based on engineering judgments in current seismic design codes. However, a systematic analysis of the key affecting factors should establish reasonable seismic design provisions for NSCs. In this study, an idealized 2-DOF model simulating the coupled structure-NSC system was constructed to analyze the parameters that affect the response of NSCs comprehensively. The analyses were conducted to evaluate the effects of structure-NSC mass ratio, structure, and NSC nonlinearities on the peak component acceleration. Also, the appropriateness of component ductility factor (Rp) given by current codes was discussed based on the required ductility capacity of NSCs. It was observed that the responses of NSCs on the coupled system were significantly affected by the mass ratio, resulting in lower accelerations than the floor spectrum-based response, which neglected the interaction effects. Also, the component amplification factor (ap) in current provisions tended to underestimate the dynamic amplification of NSCs with a mass ratio of less than 15%. The nonlinearity of NSCs decreased the component responses. In some cases, the code-specified Rp caused nonlinear deformation far beyond the ductility capacity of NSCs, and a practically unacceptable level of ductility was required for short-period NSCs to achieve the assigned amount of response reduction.

Evaluation of Ductility Factors for MDOF Systems in Special Steel Moment Resisting Frames (철골 연성 모멘트 골조에 대한 다자유도 시스템의 연성계수 평가)

  • Kang, Cheol-Kyu;Han, Young-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.13-22
    • /
    • 2004
  • Ductiluty factor has played an important role in seismic design as it is key component of response modification factor(R). In this stuty, ductility factors() are calculated by multiplying ductility factor for SDOF systems() and MDOF modification factors(). Ductility factors() for SDOF systems are computed from nonlinear dynamic analysis undergoing different level of displacement ductiluty demands and period when subjected to a large number of recorded earthquake ground motions. The MDOF modification factors() are proposed to account for the MDOF systems, based on previous studies. A total of 108 prototype steel frames are designed to investigate the ductility factors considering the number of stories(4, 8 and 16-stories), framing system(Perimeter Frames, PF and Distributed Frames, DF), failure mechanism(Strong-Column Weak-Beam, SCWB and Weak-Column Strong-Beam, WCSB), soil profiles(SA, SC and SE in UBC 1997) and seismic zone factors(Z=0.075, 0.2 and 0.4 in UBC 1997). It is shown that the number of stories, failure mechanisms (SCWB, WCSB), and soil profiles have great influence on the ductility factors, however, the structural system(Perimeter frames, Distributed frames), and seismic zones have no influence on the ductility factors.

Investigation on Seismic Design Component and Load for Nonstructural Element (건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰)

  • Choi, Insub;Lee, Joo-Hee;Sohn, Jung-Hoon;Kim, JunHee
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.5
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • v.5 no.1
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Evaluation of Site-dependent Ductility Factors for Elastic Perfectly Plastic SDOF Systems (토질조건에 따른 탄소성 단자유도 구조물의 연성계수 평가)

  • Kang, Cheol-Kyu;Choi, Byong-Jeong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.11-20
    • /
    • 2004
  • This paper suggests the site-dependent ductility factor which is a key component of response modification factor(R). To compute the ductility factor, a group of 1,860 ground motions recorded from 47 earthquake was considered. Based on the local site conditions at the recording station, ground motions were classified into four groups according to average shear wave velocity. This site classification was consistent with site categories of the UBC(1997), NEHRP(1997) and IBC 2000(1997). Based on the results of regression analysis, a simplified equations were proposed to compute site-dependent ductility factors. The proposed equations were relatively simple and provide a good estimation of mean ductility factors. Based on the proposed equation, ductility factors considering the site conditions can be evaluated in accordance with the present building codes.

Regulation of Activity of the Response Regulator RssB (Response Regulator RssB의 활성 조절)

  • Park, Hee Jeong;Bang, Iel Soo
    • Korean Journal of Microbiology
    • /
    • v.49 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Against environmental stresses, many bacteria utilize the alternate sigma factor RpoS that induces transcription of the specific set of genes helpful in promoting bacterial survival. Intracellular levels of RpoS are determined mainly by its turnover through proteolysis of ClpXP protease. Delivery of RpoS to ClpXP strictly requires the adaptor protein RssB. The two-component-type response regulator RssB constantly interacts with RpoS, but diverse environmental changes inhibit this interaction through modification of RssB activity, which increases RpoS levels in bacteria. This review discusses and summarizes recent findings on regulatory factors in RssB-RpoS interactions, including IraD, IraM, IraP anti-adaptor proteins of RssB and phosphorylation of N-terminal receiver domain of RssB. New information shows that the coordinated regulation of RssB activity in controlling RpoS turnover confers efficient bacterial defense against stresses.

The Effects of Alkaloid Fraction of Korean Ginseng on the Radiation-Induced DNA Strand Breaks (방사선 조사에 의한 DNA Double Strand Breaks의 생성 및 회복에 미치는 인삼 알칼로이드 분획의 효과)

  • Cho Chul Koo;Kim Tae Hwan;Yoo Seong Yul;Koh Kyoung Hwan;Kim Mi Sook;Kim Jeong Hee;Kim Seong Ho;Yoon Hyung Keun;Ji Young Hoon
    • Radiation Oncology Journal
    • /
    • v.13 no.2
    • /
    • pp.113-120
    • /
    • 1995
  • Purpose : To investigate the effect of alkaloid fraction from Korean ginseng on radiation-induced DNA double strand breaks (dsb) formation and repair in murine lymphocytes Materials and Methods : We used the neutral filter elution technique to assay $^{60}Co\;{\gamma}$ ray-induced DNA double strand breaks formation and repair in C57BL/6 mouse spleen lymphocytes for evaluating the dose-response relationship in the presence of alkaloid fraction as a radioprotective agent. The lymphocytes were stimulated with Phytohemagglutinin (PHA, 2 u g/ml) to label $^3[H]-thymidine.$ Isotope-labelled lymphocytes in suspension were exposed to 100 Gy at $0^{\cdot}C$ in the alkaloid fraction-treated group and elution procedure was performed at PH 9.6. The extents of formation of radiation-induced DNA double strand breaks and repair were compared respectively via strand scission factor (SSF) and relative strand scission factor (RSSF). Results: Alkaloid fraction reduced the formation of double strand breaks with dose modification factor of 2 15, compared to control group Rejoining of DNA dsb appeared to take place via two components. The first fast component was completed within 20.4 minutes, but the second slow component was not completed until 220.2 minutes after irradiation. About $30\%$ of dsb formed by irradiation was ultimately unrejoined despite the administration of alkaloid fraction. The administration of alkaloid fraction had a great effect on the second slow component of repair; the half-time of fast component repair was not changed, but that of slow component was 621.8 minutes. Conclusion: Neutral filter elution assay Proved to be a very effective method to quantitate the extents of DNA dsb formation and its repair. By using this technique, we were able to evaluate the efficiency of alkaloid fraction from Korean ginseng as a valuable radioprotector. Alkaloid fraction can be used prophylactically to prevent or ameliorate the severe radiation damages in workers and neighbors around the atomic power plants. For more refined study, however, more advanced purification of alkaloid fraction wil be needed in the near future.

  • PDF