• 제목/요약/키워드: Component mode synthesis

검색결과 75건 처리시간 0.027초

구분모드합성에 의한 드럼 브레이크 스퀼 소음 해석 및 저감 (Squeal Noise Analysis and Reduction of Drum Brake Using Component Mode Synthesis)

  • 김진호;배병주;이시복;김태종
    • 한국소음진동공학회논문집
    • /
    • 제15권1호
    • /
    • pp.72-80
    • /
    • 2005
  • Recent studies have dealt with brake squeal in terms of the coupled vibration of brake component parts. In this paper, we assemble the mode models derived from FE analysis of the individual components of the drum brake system into the system model by considering the friction interaction of the lining and drum at the interface. The validity of the component models are backed up by the experimental confirmation work. By scrutinizing the real parts of the complex eigen-values of the system, the unstable modes, which may be strong candidate sources of squeal noise, are identified. Mode participation factors are calculated to examine the modal coupling mechanism. The model predictions for the unstable frequencies pointed well the actual squeal noise frequencies measured through field test. Sensitivity analysis is also performed to identify parametric dependency trend of the unstable modes, which would indicate the direction for the squeal noise reduction design. Finally, reduction of the squeal noise tendency through shape modification is tried.

Free vibration analysis of multiple open-edge cracked beams by component mode synthesis

  • Kisa, M.;Brandon, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.81-92
    • /
    • 2000
  • This study is an investigation of the effect of cracks on the dynamical characteristics of a cantilever beam, having multiple open-edge transverse cracks. The flexibilities due to crack have been identified for several crack depths and locations. In the study the finite element method and component mode synthesis methods are used. Coupling the components is performed by a flexibility matrix taking into account the interaction forces. Each component is modelled by cantilever beam finite elements with two nodes and three degrees of freedom at each node. The results obtained lead to conclusion that, by using the drop in the natural frequencies and the change in the mode shapes, the presence and nature of cracks in a structure can be detected. There is some counter-evidence, however, that the effects due to multiple cracks may interact to make detection more difficult than for isolated cracks.

부분구조합성법에 의한 왕복동식 압축기 구조 변경 (Structure Modification of the Reciprocating Compressor Using Component Mode Synthesis)

  • 김수현;이정익;이동연;이무연
    • 한국산학기술학회논문지
    • /
    • 제12권1호
    • /
    • pp.45-54
    • /
    • 2011
  • 본 논문은 소형 냉동 시스템에서 왕복동식 압축기는 주요한 진동원이자 소음원으로서 압축기의 외부 구조 동특성을 변경함으로써, 진동과 소음을 줄이는 방법에 관한 것이다. 구조 동특성의 변경은 유한요소 모델에 의한 해석적 방법을 적용하고, 구조 변경의 시도는 두 유한요소들 간의 모드합성법(CMS)을 적용한다. 효과적인 CMS의 적용방법을 찾아내고, 이 방법에 대하여 압축기 모델에 대한 실험적 검증을 통하여 검증하였다.

구조물의 효율적인 해석을 위한 모델 축소기법 연구 (A Model Reduction Method for Effective Analysis of Structures)

  • 박영창;황재혁
    • 한국항공운항학회지
    • /
    • 제14권1호
    • /
    • pp.28-35
    • /
    • 2006
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for large, flexible structures. The model is partitioned into several subdomains, and a generalized Craig-Bampton representation is derived. In this paper the mode sets (normal modes, constraint modes) is employed for model reduction. A generalized model reduction procedure is described. Vaious reduction methods that use constraint modes is described in detail. As examples, a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model is made via eigenpair and dynamic responses.

  • PDF

유연성을 가진 기계 시스템의 동역학 해석 (DYNAMIC ANALYSIS OF A MECHANICAL SYSTEM WITH FLEXIBLE BODIES)

  • 박태원;서종휘;정원선;채장수;서현석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.422-427
    • /
    • 2001
  • The component mode synthesis method allows the elastic deformation of each component in the flexible multibody system by a sum of modes and modal coordinates. This paper focuses on the selection of boundary conditions and deformation modes for redundantly constrained flexible components in mechanical system dynamics. The result of a flexible body dynamic analysis with only normal modes is used to identify proper boundary conditions of a static modes and a desired set of static modes which will be used in the final model. A simple four bar mechanism is used to explain the procedure and a space satellite with solar panels is analyzed using the proposed method.

  • PDF

구조물의 효율적인 해석을 위한 모델 축소기법 연구 (A Study on Model Reduction for Effective Analysis of Structure)

  • 박영창;황재혁;오화석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1370-1375
    • /
    • 2001
  • Substructure coupling or component mode synthesis may be employed in the solution of dynamic problems for structure. The model is partitioned into several subdomains. and a generalized Craig-Bampton representation is derived. In this paper the mode sets(normal modes. constraint modes) have been employed for model reduction. A generalized model reduction procedure has been described. Those reduction methods which adapt constraint modes have been described in detail. As examples. a flexible structure and a 10 DOF damped system are analyzed. Comparison with a conventional reduction method based on a complete model has been made via eigenpairs and dynamic responses.

  • PDF

부구조물 합성법을 이용한 슬라이딩 모드 해석 (Sliding Mode Analysis Using Substructure Synthesis Method)

  • 김대관;이민수;한재흥;고태환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1366-1371
    • /
    • 2006
  • A structural coupling method is developed for the dynamic analysis of a nonlinear structure with concentrated nonlinear hinge joints or sliding lines. Component mode synthesis method is extended to couple substructures and the nonlinear models. In order to verify the improved coupling method, a numerical plate model consisting of two substructures and torsional springs, is synthesized by using the proposed method and its model parameters are compared with analysis data. Then the coupling method is applied to a three-substructure-model with the nonlinearity of sliding lines between the substructures. The coupled structural model is verified from its dynamic analysis. The analysis results show that the improved coupling method is adequate for the structural nonlinear analyses with the nonlinear hinge and sliding mode condition.

  • PDF

Dynamic analysis of a flexible multibody system

  • Chae Jang-Soo;Park Taw-Won;Kim J.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권4호
    • /
    • pp.21-25
    • /
    • 2005
  • In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody. Since the combination of these modes should be different for each type of connecting part, the modal synthesis method was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the proposed method.

Modal analysis of cracked cantilever composite beams

  • Kisa, Murat;Arif Gurel, M.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.143-160
    • /
    • 2005
  • Modal analysis of cracked cantilever composite beams, made of graphite-fibre reinforced polyamide, is studied. By using the finite element and component mode synthesis methods, a numeric model applicable to investigate the vibration of cracked composite beams is developed. In this new approach, from the crack section, the composite beam separated into two parts coupled by a flexibility matrix taking into account the interaction forces. These forces are derived from the fracture mechanics theory as the inverse of the compliance matrix calculated with the proper stress intensity factors and strain energy release rate expressions. Numerical results are obtained for modal analysis of composite beams with a transverse non-propagating open crack, addressing the effects of the location and depth of the crack, and the volume fraction and orientation of the fibre on the natural frequencies and mode shapes. By means of modal data, the position and dimension of the defect can be found. The results of the study confirmed that presented method is suitable for the vibration analysis of cracked cantilever composite beams. Present technique can be easily extended to composite plates and shells.

집중 질량-스프링 모델을 이용한 볼트 결합부 모델링 (Dynamic Modeling of Bolt Joints Using Lumped Mass-Spring Model)

  • 고강호;이장무
    • 대한기계학회논문집A
    • /
    • 제25권3호
    • /
    • pp.495-501
    • /
    • 2001
  • In this paper, a new technique which models the joints characteristics through reduction of DOFs of structures with joints using component mode synthesis (CMS) method is proposed. Bolt joints are modeled by mass-spring systems. Also generalized mass and stiffness matrices for this models are introduced. Because bolt joints have influence on eigenvalues of structures, exact eigenvalues from modal test are used. The results show that the behaviors of structures with bolt joints depend to a large extent on the translational DOFs and not on rotational DOFs of mass and stiffness matrices of bolts. Furthermore it is confirmed that lumped mass-spring systems as models of bolt joints are effective models considering the facts that joint characteristics converged to constant values in some iterations and eignevalues from proposed method are in good agreement with ones from modal test.