• Title/Summary/Keyword: Component Scenario

Search Result 119, Processing Time 0.027 seconds

A Study of Mobile Collaboration Environment based on Distributed Object Group Framework and Its application (분산객체그룹프레임워크 기반 모바일 협업 환경 및 적용에 관한 연구)

  • Kim, Dong-Seok;Jeong, Chang-Won;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.6 s.109
    • /
    • pp.847-856
    • /
    • 2006
  • In this paper, we suggested a mobile collaboration framework for supporting mobile services among mobile devices, and designed and implemented on this environment. The suggested framework has three elements; groups of sensors and mobile devices(Fixed and Moving-typed PDAs) and a home server. We designed interfaces for interactions with each other in collaboration environment with three elements described above. The information collected by sensors can be share and exchanged by mobile devices or a home server in accordance with Push and Pull methods. This framework is based on the distributed object group framework(DOGF) we implemented before. Therefore the DOGF provides functions of object group management, storing information and security services to our mobile collaboration framework via application interfaces defined. The information collected by sensors is arranged according to user's security 'demands. And user profile information is used for checking authority of each service object. Each component for executing functions of mobile devices and a home server is implemented by TMO scheme. And we used the TMOSM for interactions between distributed components. Finally, we showed via GUI the executablity of a given healthcare application scenario on our mobile collaboration framework.

An Architecture for User Level End-to-end QoS using Overlay in NGN (NGN에서 오버레이를 이용한 사용자 관점의 End-to-end QoS 지원 구조)

  • Lee Jihyun;Lim Kyungshik;Oh Hangseok;Nam Taekyong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.6 s.102
    • /
    • pp.781-792
    • /
    • 2005
  • This study proposes an Architecture for user level End-to-end Quality of Service(QoS) using overlay In Next Generation Network(NGN). Inexisting NGNs, the IMS of a control plane provides user QoS through direct traffic control and resource-reservation over the IP packet transport network of a user plane. Further, a set of torrent studies are ongoing not only to maximize the QoS for users, but also to minimize the quality deterioration for supporting the user End-to-end QoS. Along with that, an extended QoS in user level must be considered, for Instance, differentiating service quality to support users' expectation, providing optimized contents by users' equipments, and so forth. Accordingly, the Overlay Service Network Architecture proposed by this study provides protocol adaptation for maximum throughput on transport layer by using the most efficient transport layer protocol to various network circumstances. Also, the Overlay Service Network Architecture on application layer distributes processing delay from the data transformation process of the user equipment to the network, and it is capable of intermediate processing depending on user service level. application service feature, and equipment circumstance as well. Thus, this study mainly proposes the Overlay Service Network Architecture for user level end-to-end QoS in NGN with the quality control features both on the transport layer and the application layer, an internal component feature, and a service scenario providing the QoS linking with 3GPP.

The First Photometric Study of NSVS 1461538: A New W-subtype Contact Binary with a Low Mass Ratio and Moderate Fill-out Factor

  • Kim, Hyoun-Woo;Kim, Chun-Hwey;Song, Mi-Hwa;Jeong, Min-Ji;Kim, Hye-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.185-196
    • /
    • 2016
  • New multiband BVRI light curves of NSVS 1461538 were obtained as a byproduct during the photometric observations of our program star PV Cas for three years from 2011 to 2013. The light curves indicate characteristics of a typical W-subtype W UMa eclipsing system, displaying a flat bottom at primary eclipse and the O'Connell effect, rather than those of an Algol/b Lyrae eclipsing variable classified by the northern sky variability survey (NSVS). A total of 35 times of minimum lights were determined from our observations (20 timings) and the SuperWASP measurements (15 ones). A period study with all the timings shows that the orbital period may vary in a sinusoidal manner with a period of about 5.6 yr and a small semi-amplitude of about 0.008 day. The cyclical period variation can be interpreted as a light-time effect due to a tertiary body with a minimum mass of 0.71 M. Simultaneous analysis of the multiband light curves using the 2003 version of the Wilson-Devinney binary model shows that NSVS 1461538 is a genuine W-subtype W UMa contact binary with the hotter primary component being less massive and the system shows a low mass ratio of q(mc/mh)=3.51, a high orbital inclination of 88.7°, a moderate fill-out factor of 30 %, and a temperature difference of ΔT=412 K. The O'Connell effect can be similarly explained by cool spots on either the hotter primary star or the cool secondary star. A small third-light corresponding to about 5 % and 2 % of the total systemic light in the B and V bandpasses, respectively, supports the third-body hypothesis proposed by the period study. Preliminary absolute dimensions of the system were derived and used to look into its evolutionary status with other W UMa binaries in the mass-radius and mass-luminosity diagrams. A possible evolution scenario of the system was also discussed in the context of the mass vs mass ratio diagram.

Future Inundation Characteristics Analysis for the Cheongmi Stream Watershed Considering Non-stationarity of Precipitation (강우의 비정상성을 고려한 청미천 유역의 미래 침수특성 분석)

  • Ryu, Jeong Hoon;Kang, Moon Seong;Jun, Sang Min;Park, Jihoon;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.81-96
    • /
    • 2017
  • Along with climate change, it is reported that the scale and the frequency of extreme climate events (e.g. heavy rain, typhoon, etc.) show unstable tendency of increase. In case of Korea, also, the frequency of heavy rainfall shows increasing tendency, thus causing natural disaster damage in downtown and agricultural areas by rainfall that exceeds the design criteria of hydraulic structures. In order to minimize natural disaster damage, it is necessary to analyze how extreme precipitation event changes under climate change. Therefore a new design criteria based on non-stationarity frequency analysis is needed to consider a tendency of future extreme precipitation event and to prepare countermeasures to climate change. And a quantitative and objective characteristic analysis could be a key to preparing countermeasures to climate change impact. In this study, non-stationarity frequency analysis was performed and inundation risk indices developed by 4 inundation characteristics (e.g. inundation area, inundation depth, inundation duration, and inundation radius) were assessed. The study results showed that future probable rainfall could exceed the existing design criteria of hydraulic structures (rivers of state: 100yr-200yr, river banks: 50yr-100yr) reaching over 500yr frequency probable rainfall of the past. Inundation characteristics showed higher value in the future compared to the past, especially in sections with tributary stream inflow. Also, the inundation risk indices were estimated as 0.14 for the past period of 1973-2015, and 0.25, 0.29, 1.27 for the future period of 2016-2040, 2041-2070, 2071-2100, respectively. The study findings are expected to be used as a basis to analyze future inundation damage and to establish management solutions for rivers with inundation risks.

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Message Interoperability in e-Logistics System (e-Logistics시스템의 메시지 상호운용성)

  • Seo Sungbo;Lee Young Joon;Hwang Jaegak;Ryu Keun Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.436-450
    • /
    • 2005
  • Existing B2B, B2C computer systems and applications that executed business trans-actions were the client- server based architecture which consists of heterogeneous hardware and software including personal computers and mainframes. Due to the active boom of electronic business, integration and compatibility of exchanged data, applications and hardwares have emerged as hot issue. This paper designs and implements a message transport system and a document transformation system in order to solve the interoperability problem of integrated logistics system in e-Business when doing electronic business. Message transport system integrated ebMS 2.0 which is standard business message exchange format of ebXML, the international standard electronic commerce framework, and JMS of J2EE enable to ensure reliable messaging. The document transformation system could convert non-standard XML documents into standard XML documents and provide the web services after integrating message system. Using suggested business scenario and various test data, our message oriented system preyed to be interoperable and stable. We participated ebXML messaging interoperability test organized by ebXML Asia Committee ITG in oder to evaluate and certify the suitability for message system.

A Study on Deep Learning-based Pedestrian Detection and Alarm System (딥러닝 기반의 보행자 탐지 및 경보 시스템 연구)

  • Kim, Jeong-Hwan;Shin, Yong-Hyeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.58-70
    • /
    • 2019
  • In the case of a pedestrian traffic accident, it has a large-scale danger directly connected by a fatal accident at the time of the accident. The domestic ITS is not used for intelligent risk classification because it is used only for collecting traffic information despite of the construction of good quality traffic infrastructure. The CNN based pedestrian detection classification model, which is a major component of the proposed system, is implemented on an embedded system assuming that it is installed and operated in a restricted environment. A new model was created by improving YOLO's artificial neural network, and the real-time detection speed result of average accuracy 86.29% and 21.1 fps was shown with 20,000 iterative learning. And we constructed a protocol interworking scenario and implementation of a system that can connect with the ITS. If a pedestrian accident prevention system connected with ITS will be implemented through this study, it will help to reduce the cost of constructing a new infrastructure and reduce the incidence of traffic accidents for pedestrians, and we can also reduce the cost for system monitoring.

Improving Non-Profiled Side-Channel Analysis Using Auto-Encoder Based Noise Reduction Preprocessing (비프로파일링 기반 전력 분석의 성능 향상을 위한 오토인코더 기반 잡음 제거 기술)

  • Kwon, Donggeun;Jin, Sunghyun;Kim, HeeSeok;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.491-501
    • /
    • 2019
  • In side-channel analysis, which exploit physical leakage from a cryptographic device, deep learning based attack has been significantly interested in recent years. However, most of the state-of-the-art methods have been focused on classifying side-channel information in a profiled scenario where attackers can obtain label of training data. In this paper, we propose a new method based on deep learning to improve non-profiling side-channel attack such as Differential Power Analysis and Correlation Power Analysis. The proposed method is a signal preprocessing technique that reduces the noise in a trace by modifying Auto-Encoder framework to the context of side-channel analysis. Previous work on Denoising Auto-Encoder was trained through randomly added noise by an attacker. In this paper, the proposed model trains Auto-Encoder through the noise from real data using the noise-reduced-label. Also, the proposed method permits to perform non-profiled attack by training only a single neural network. We validate the performance of the noise reduction of the proposed method on real traces collected from ChipWhisperer board. We demonstrate that the proposed method outperforms classic preprocessing methods such as Principal Component Analysis and Linear Discriminant Analysis.

A study on damage prediction analysis for styrene monomer fire explosion accidents (스티렌 모노머 화재폭발사고 피해예측 분석에 관한 연구)

  • Hyung-Su Choi;Min-Je Choi;Guy-Sun Cho
    • Industry Promotion Research
    • /
    • v.9 no.2
    • /
    • pp.37-44
    • /
    • 2024
  • This study selected the worst-case scenario for fireball and vapor cloud explosion (VCE) of a styrene monomer storage tank installed in a petrochemical production plant and performed damage prediction and accident impact analysis. The range of influence of radiant heat and overpressure due to fireball and vapor VCE during the abnormal polymerization reaction of styrene monomer, the main component of the mixed residue oil storage tank, was quantitatively analyzed by applying the e-CA accident damage prediction program. The damage impact areas of radiant heat and explosion overpressure are analyzed to have a maximum radius of 1,150m and 626m, respectively. People within 1,150m of radiant heat of 4kW/m2 may have their skin swell when exposed to it for 20 seconds. In buildings within 626m, where an explosion overpressure of 21kPa is applied, steel structures may be damaged and separated from the foundation, and people may suffer physical injuries. In the event of a fire, explosion or leak, determine the risk standards such as the degree of risk and acceptability to workers in the work place, nearby residents, or surrounding facilities due to radiant heat or overpressure, identify the hazards and risks of the materials handled, and establish an emergency response system. It is expected that it will be helpful in establishing measures to minimize damage to workplaces through improvement and investment activities.