• Title/Summary/Keyword: Component Design

Search Result 3,794, Processing Time 0.026 seconds

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Factors Contributing to Recommendation Intention of Foreign Tourists in Times of Crisis: A Moderated Moderation Analysis

  • Ko-Woon Kim;Seung-Gee Hong
    • Journal of Korea Trade
    • /
    • v.27 no.1
    • /
    • pp.42-59
    • /
    • 2023
  • Purpose - As a leading source of foreign exchange and investment, tourism has grown in importance as a component of international trade. Accordingly, in recent decades much attention has been directed toward attracting foreign tourists and, in turn, positively affecting the recommendation intentions of foreign tourists. Despite such interests, there remains a dearth of empirical research on this issue. Moreover, prior research has focused primarily on the simple main effect of a certain factor on recommendation intentions. Therefore, the present study aims to (1) investigate the effect of overall satisfaction on the recommendation intentions of foreign tourists, and (2) examine the potential moderating effects of personal factors (i.e., age and destination image) on the association between overall satisfaction and recommendation intention. Design/methodology - Using a moderated moderation analysis of the data drawn from the 2018 International Visitor Survey conducted by the Korea Tourism Organization, this study proposes the three-way interaction effects of overall satisfaction, age, and destination image on recommendation intention. Findings - The findings of the study indicate that overall satisfaction is positively associated with recommendation intention and this relationship becomes stronger among younger tourists. The findings further indicate that the moderating effect of age on the relationship between overall satisfaction and recommendation intention depends on changes in the image of the destination. Specifically, the destination image exerts a positive moderating impact on the influence of age that moderates the overall satisfaction and recommendation intention relationship. Originality/value - Considering that the tourism economy has been severely affected by the current COVID-19 pandemic, this study contributes to a more accurate understanding of the factors affecting the recommendation intention, especially in times of crisis.

Study on the Ku band Solid-State Power Amplifier(SSPA) through the 40 W-grade High Power MMIC Development and the Combination of High Power Modules (40 W급 고출력 MMIC 개발과 고출력 증폭기 모듈 결합을 통한 Ku 밴드 반도체형 송신기(SSPA) 개발에 관한 연구)

  • Kyoungil Na;Jaewoong Park;Youngwan Lee;Hyeok Kim;Hyunchul Kang;SoSu Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.227-233
    • /
    • 2023
  • In this paper, to substitute the existing TWTA(Travailing Wave Tube Amplifier) component in small radar system, we developed the Ku band SSPA(Solid-State Power Amplifier) based on the fabrication of power MMIC (Monolithic Microwave Integrated Circuit) chips. For the development of the 500 W SSPA, the 40 W-grade power MMIC was designed by ADS(Advanced Design System) at Keysight company with UMS GH015 library, and was processed by UMS foundry service. And 70 W main power modules were achieved the 2-way T-junction combiner method by using the 40 W-grade power MMICs. Finally, the 500 W SSPA was fabricated by the wave guide type power divider between the drive power amplifier and power modules, and power combiner with same type between power modules and output port. The electrical properties of this SSPA had 504 W output power, -58.11 dBc spurious, 1.74 °/us phase variation, and -143 dBm/Hz noise level.

Market Segmentation Based on Types of Motivations to Visit Coffee Shops (커피전문점 방문동기유형에 따른 시장세분화)

  • Lee, Yong-Sook;Kim, Eun-Jung;Park, Heung-Jin
    • The Korean Journal of Franchise Management
    • /
    • v.7 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Purpose - The primary purpose of this study is to employ effective marketing methods using market segmentation of coffee shops by determining how motivations to visit coffee shops have different impacts on demographic profile of visitors and characteristics of coffee shop visits, so as to draw out a better understanding of customers of coffee market. Research design, data, and methodology - Data were collected using surveys of self-administered questionnaires toward coffee shop users in Daejeon, Korea. A number of samples used in data analysis were 253 excluding unusable responses. The data were analyzed through frequency, reliability, and factor analysis using SPSS 20.0. Factor analysis was conducted through the principal component analysis and varimax rotation method to derive factors of one or more eigen values. In addition, the cluster analysis, multivariate ANOVA, and cross-tab analysis were used for the market segmentation based on the types of motivation for coffee shop visits. The process of the cluster analysis is as follows. Four clusters were derived through hierarchical clustering, and k-means cluster analysis was then carried out using mean value of the four clusters as the initial seed value. Result - The factor analysis delineated four dimensions of motivation to visit coffee shops: ostentation motivation, hedonic motivation, esthetic motivation, utility motivation. The cluster analysis yielded four clusters: utility and esthetic seekers, hedonic seekers, utility seekers, ostentation seekers. In order to further specify the profile of four clusters, each cluster was cross tabulated with socio-demographics and characteristics of coffee shop visits. Four clusters are significantly different from each other by four types of motivations for coffee shop visits. Conclusions - This study has empirically examined the difference in demographic profile of visitors and characteristics of coffee shop visits by motivation to visit coffee shops. There are significant differences according to age, education background, marital status, occupation and monthly income. In addition, coffee shops use pattern characterization in frequency of visits to coffee shops, relationships with companion, purpose of visit, information sources, brand type, average expense per visit, important elements of selection attribute were significantly different depending on motivations for coffee shop visits.

Characterization of Fuel Cell Stack Using Hydrocarbon Polymer-Silica Composite Membranes (탄화수소계 고분자-실리카 복합막이 적용된 연료전지 스택 성능평가)

  • Hyun Woo Kang;Doo Sung Hwang;Chi Hoon Park;Young Moo Lee
    • Membrane Journal
    • /
    • v.33 no.3
    • /
    • pp.127-136
    • /
    • 2023
  • In this study, the electrochemical performance of a 5-layer fuel cell stack using silica composite membranes as polymer electrolyte membranes was evaluated. It was observed that the flow rate of the fuel gases plays a crucial role in stack performance, particularly being mainly dependent on the flow rate of hydrogen. Increasing the flow rate of oxygen resulted in negligible changes in performance, whereas an increase in the flow rate of hydrogen demonstrated performance improvements. However, this led to an imbalance in the ratio of hydrogen to oxygen flow rates, causing significant degradation in stack performance and durability. A decline in stack performance was also observed over time due to the degradation of stack components. This phenomenon was consistently observed in individual unit cells. Based on these findings, it was emphasized that, in addition to optimizing the performance of each component during stack operation, it is important to optimize design and operating conditions for uniform flow rate control. Lastly, the developed silica composite membrane was assessed to have sufficient performance for application in actual fuel cell systems, exhibiting a performance of over 25 W based on maximum power.

Performance Impact Analysis of Resistance Elements in Field-Effect Transistors Utilizing 2D Channel Materials (2차원 채널 물질을 활용한 전계효과 트랜지스터의 저항 요소 분석)

  • TaeYeong Hong;Seul Ki Hong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.83-87
    • /
    • 2023
  • In the field of electronics and semiconductor technology, innovative semiconductor material research to replace Si is actively ongoing. However, while research on alternative materials is underway, there is a significant lack of studies regarding the relationship between 2D materials used as channels in transistors, especially parasitic resistance, and RF (radio frequency) applications. This study systematically analyzes the impact on electrical performance with a focus on various transistor structures to address this gap. The research results confirm that access resistance and contact resistance act as major factors contributing to the degradation of semiconductor device performance, particularly when highly scaled down. As the demand for high-frequency RF components continues to grow, establishing guidelines for optimizing component structures and elements to achieve desired RF performance is crucial. This study aims to contribute to this goal by providing structural guidelines that can aid in the design and development of next-generation RF transistors using 2D materials as channels.

A Study on the Design Criteria of UAM Vertiport Complying New FAA and EASA Regulations and Its Domestic Applications (FAA와 EASA의 새 규정에 따른 UAM Vertiport 설계 기준 및 국내 적용 연구)

  • Byeong-Seon Ahn;Sung-chang Choi;Ho-Yon Hwang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.380-392
    • /
    • 2022
  • In this paper, the new vertiport regulations of the FAA and EASA are analyzed for urban air mobility(UAM), and the major components of the vertipad and the new specifications of each component are analyzed, and UAM operation in various environments is analyzed. Additional components for vertiport and regulations for surrounding airspace were also reviewed. Afterwards, based on the size of the S-A1 aircraft being developed by Hyundai Motors, domestic vertiport specifications and layouts were investigated for UAM operation, and these were applied to the city of Incheon. In addition, the time required for using a taxi or car were compared with the time required for using UAM between major locations in Incheon and Seoul.

Evaluation of Running Friction Torque of Tapered Roller Bearings Considering Geometric Uncertainty of Roller (롤러의 형상 불확실성을 고려한 테이퍼 롤러 베어링의 구동마찰토크 평가)

  • Jungsoo Park;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.183-189
    • /
    • 2023
  • A bearing is a mechanical component that transmits rotation and supports loads. According to the type of rotating mechanism, bearings are categorized into ball bearings and tapered roller bearings. Tapered roller bearings have higher load-bearing capabilities than ball bearings. They are used in applications where high loads need to be supported, such as wheel bearings for commercial vehicles and trucks, aircraft and high-speed trains, and heavy-duty spindles for heavy machinery. In recent times, the demand for reducing the driving friction torque in automobiles has been increasing owing to the CO2 emission regulations and fuel efficiency requirements. Accordingly, the research on the driving friction torque of bearings has become more essential. Researchers have conducted various studies on the lubrication, friction, and contact in tapered roller bearings. Although researchers have conducted numerous studies on the friction in the lips and on roller misalignment and skew, studies considering the influence of roller shape, specifically roller shape errors including lips, are few. This study investigates the driving friction torque of tapered roller bearings considering roller geometric uncertainties. Initially, the study calculates the driving friction torque of tapered roller bearings when subjected to axial loads and compares it with experimental results. Additionally, it performs Monte Carlo simulations to evaluate the influence of roller geometric uncertainties (i.e., the effects of roller geometric deviations) on the driving friction torque of the bearings. It then analyzes the results of these simulations.

A Study on the Standard Architecture of IFF Interface SW in the Naval Combat Management System

  • Yeon-Hee Noh;Dong-Han Jung;Young-San Kim;Hyo-Jo Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.139-149
    • /
    • 2024
  • In this paper, we propose the standard architecture for the IFF interface SW in naval combat management system(CMS). The proposed standard interface architecture is a method designed to reduce modification efforts and man-month of reliability test for the existing the IFF interface SW of 11 types. We identified highly dependent CMS and GFE information, leading to the redefinition of standard requirements and functions, and proceeded with the initial design applying the Naval Shield Component Platform(NSCP). Subsequently, using the Feature Model, we derived additional common and variable elements for the interface of multiple CMS and GFE. Considering the S.O.L.I.D principles, we designed the final architecture. The proposed IFF Interface SW, based on the standard architecture, is expected to enhance management efficiency through a common architecture, increase code reusability and scalability, and reduce development costs by shortening reliability testing times.

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu;Yun Zhou;Zhang Yan Chen;Song Wang;Ke Jiang
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.203-218
    • /
    • 2024
  • Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.