• Title/Summary/Keyword: Complexity of Computation

Search Result 609, Processing Time 0.024 seconds

Configuration System through Vector Space Modeling In I-Commerce (전자상거래에서의 벡터 공간 모델링을 통한 Configuration 시스템)

  • 김세형;조근식
    • Journal of Intelligence and Information Systems
    • /
    • v.7 no.1
    • /
    • pp.149-159
    • /
    • 2001
  • There have been lots of researches for providing a personalized service to a customer using one-to-one marketing and collaborative filtering techniques in E-Commerce. However, there are technical difficulties for providing the recommendation of products far users, which often involve high complexity of computation. In this paper, we have presented an integrated method of classification problem solving method and constraint based configuration techniques. This method can reduce a complexity of computation by classifying a solution domain space that has a higher complexity of composition. Thereafter, we have modeled customers constraints and the components of products to configure a complete system by passing it to constraint processing module in Constraint Satisfaction Problems. Constraint-based configuration uses the constraint propagation using the constraints of buyers and the constraints among PC components to configure a proper product for a customer. We have transformed and applied vector space modeling method in the field of information retrieval to consider a customer satisfaction in addition to the CSP. Finally, we have applied our system to test data fur evaluating a customers satisfaction and performance of the proposed system.

  • PDF

Efficient Convolutional Neural Network with low Complexity (저연산량의 효율적인 콘볼루션 신경망)

  • Lee, Chanho;Lee, Joongkyung;Ho, Cong Ahn
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.685-690
    • /
    • 2020
  • We propose an efficient convolutional neural network with much lower computational complexity and higher accuracy based on MobileNet V2 for mobile or edge devices. The proposed network consists of bottleneck layers with larger expansion factors and adjusted number of channels, and excludes a few layers, and therefore, the computational complexity is reduced by half. The performance the proposed network is verified by measuring the accuracy and execution times by CPU and GPU using ImageNet100 dataset. In addition, the execution time on GPU depends on the CNN architecture.

Reduction of Structural and Computational Complexity in IMD Reduction Method of the PTS-based OFDM Communication System (PTS 방식의 OFDM 통신 시스템에서 IMD 저감 기법의 복잡도와 계산량 저감)

  • Kim, Seon-Ae;Lee, Il-Jin;Baek, Gwang-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8A
    • /
    • pp.583-591
    • /
    • 2009
  • OFDM(orthogonal frequency division multiplexing) signal with high PAPR(peak to average power ratio) produces the nonlinear distortion and/or decreases down the power efficiency of HPA(high power amplifier). So, the IMD(inter-modulation distortion) reduction method was proposed to reduce the nonlinear distortion, which shows better BER(bit error rate) performance than the PAPR reduction methods. However, IMD reduction method has inherent problem which system complexity and processing time increases because the FFT(fast Fourier transform) processor is added in transmitter and decision criterion of IMD reduction method is computed in frequency domain,. In this paper, therefore, we propose a new IMD reduction method to reduce the computational complexity and structure of IMD computation. And we apply this proposed method into OFDM system using PTS(partial transmit sequence) scheme and compare the computational complexity between conventional and proposed IMD reduction method. This method can reduce the system size and computational complexity. Also, the proposed has almost same BER performance with the conventional IMD reduction method.

Measurement of Classes Complexity in the Object-Oriented Analysis Phase (객체지향 분석 단계에서의 클래스 복잡도 측정)

  • Kim, Yu-Kyung;Park, Jai-Nyun
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.10
    • /
    • pp.720-731
    • /
    • 2001
  • Complexity metrics have been developed for the structured paradigm of software development are not suitable for use with the object-oriented(OO) paradigm, because they do not support key object-oriented concepts such as inheritance, polymorphism. message passing and encapsulation. There are many researches on OO software metrics such as program complexity or design metrics. But metrics measuring the complexity of classes at the OO analysis phase are needed because they provide earlier feedback to the development project. and earlier feedback means more effective developing and less costly maintenance. In this paper, we propose the new metrics to measure the complexity of analysis classes which draw out in the analysis based on RUP(Rational Unified Process). By the collaboration complexity, is denoted by CC, we mean the maximum number of the collaborations can be achieved with each of the collaborator and determine the potential complexity. And the interface complexity, is denoted by IC, shows the difficulty related to understand the interface of collaborators each other. We verify theoretically the suggested metrics for Weyuker's nine properties. Moreover, we show the computation results for analysis classes of the system which automatically respond to questions of the user using the text mining technique. As a result of the comparison of CC and CBO and WMC suggested by Chidamber and Kemerer, the class that have highly the proposed metric value maintain the high complexity at the design phase too. And the complexity can be represented by CC and IC more than CBO and WMC. We can expect that our metrics may provide us the earlier feedback and hence possible to predict the efforts, costs and time required to remainder processes. As a result, we expect to develop the cost-effective OO software by reviewing the complexity of analysis classes in the first stage of SDLC(Software Development Life Cycle).

  • PDF

Multidimensional uniform cubic lattice vector quantization for wavelet transform coding (웨이브렛변환 영상 부호화를 위한 다차원 큐빅 격자 구조 벡터 양자화)

  • 황재식;이용진;박현욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1515-1522
    • /
    • 1997
  • Several image coding algorithms have been developed for the telecommunication and multimedia systems with high image quality and high compression ratio. In order to achieve low entropy and distortion, the system should pay great cost of computation time and memory. In this paper, the uniform cubic lattice is chosen for Lattice Vector Quantization (LVQ) because of its generic simplicity. As a transform coding, the Discrete Wavelet Transform (DWT) is applied to the images because of its multiresolution property. The proposed algorithm is basically composed of the biorthogonal DWT and the uniform cubic LVQ. The multiresolution property of the DWT is actively used to optimize the entropy and the distortion on the basis of the distortion-rate function. The vector codebooks are also designed to be optimal at each subimage which is analyzed by the biorthogonal DWT. For compression efficiency, the vector codebook has different dimension depending on the variance of subimage. The simulation results show that the performance of the proposed coding mdthod is superior to the others in terms of the computation complexity and the PSNR in the range of entropy below 0.25 bpp.

  • PDF

Recursive Unscented Kalman Filtering based SLAM using a Large Number of Noisy Observations

  • Lee, Seong-Soo;Lee, Suk-Han;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.736-747
    • /
    • 2006
  • Simultaneous Localization and Map Building(SLAM) is one of the fundamental problems in robot navigation. The Extended Kalman Filter(EKF), which is widely adopted in SLAM approaches, requires extensive computation. The conventional particle filter also needs intense computation to cover a high dimensional state space with particles. This paper proposes an efficient SLAM method based on the recursive unscented Kalman filtering in an environment including a large number of landmarks. The posterior probability distributions of the robot pose and the landmark locations are represented by their marginal Gaussian probability distributions. In particular, the posterior probability distribution of the robot pose is calculated recursively. Each landmark location is updated with the recursively updated robot pose. The proposed method reduces filtering dimensions and computational complexity significantly, and has produced very encouraging results for navigation experiments with noisy multiple simultaneous observations.

KAIST ARM의 고속동작제어를 위한 하드웨어 좌표변환기의 개발

  • 박서욱;오준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.127-132
    • /
    • 1992
  • To relize the future intelligent robot the development of a special-purpose processor for a coordinate transformation is evidently challenging task. In this case the complexity of a hardware architecture strongly depends on the adopted algorithm. In this paper we have used an inverse kinemetics algorithm based on incremental unit computation method. This method considers the 3-axis articulated robot as the combination of two types of a 2-axis robot: polar robot and 2-axis planar articulated one. For each robot incremental units in the joint and Cartesian spaces are defined. With this approach the calculation of the inverse Jacobian matrix can be realized through a simple combinational logic gate. Futhermore, the incremental computation of the DDA integrator can be used to solve the direct kinematics. We have also designed a hardware architecture to implement the proposed algorithm. The architecture consists of serveral simple unitsl. The operative unit comprises several basic operators and simple data path with a small bit-length. The hardware architecture is realized byusing the EPLD. For the straight-line motion of the KAIST arm we have obtained maximum end effector's speed of 12.6 m/sec by adopting system clock of 8 MHz.

Density-based Outlier Detection for Very Large Data (대용량 자료 분석을 위한 밀도기반 이상치 탐지)

  • Kim, Seung;Cho, Nam-Wook;Kang, Suk-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.2
    • /
    • pp.71-88
    • /
    • 2010
  • A density-based outlier detection such as an LOF (Local Outlier Factor) tries to find an outlying observation by using density of its surrounding space. In spite of several advantages of a density-based outlier detection method, the computational complexity of outlier detection has been one of major barriers in its application. In this paper, we present an LOF algorithm that can reduce computation time of a density based outlier detection algorithm. A kd-tree indexing and approximated k-nearest neighbor search algorithm (ANN) are adopted in the proposed method. A set of experiments was conducted to examine performance of the proposed algorithm. The results show that the proposed method can effectively detect local outliers in reduced computation time.

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF

A MODIFIED EXTENDED KALMAN FILTER METHOD FOR MULTI-LAYERED NEURAL NETWORK TRAINING

  • KIM, KYUNGSUP;WON, YOOJAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.22 no.2
    • /
    • pp.115-123
    • /
    • 2018
  • This paper discusses extended Kalman filter method for solving learning problems of multilayered neural networks. A lot of learning algorithms for deep layered network are sincerely suffered from complex computation and slow convergence because of a very large number of free parameters. We consider an efficient learning algorithm for deep neural network. Extended Kalman filter method is applied to parameter estimation of neural network to improve convergence and computation complexity. We discuss how an efficient algorithm should be developed for neural network learning by using Extended Kalman filter.