• Title/Summary/Keyword: Complex topography

Search Result 203, Processing Time 0.022 seconds

A Simple Method Using a Topography Correction Coefficient for Estimating Daily Distribution of Solar Irradiance in Complex Terrain (지형보정계수를 이용한 복잡지형의 일 적산일사량 분포 추정)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Accurate solar radiation data are critical to evaluate major physiological responses of plants. For most upland crops and orchard plants growing in complex terrain, however, it is not easy for farmers or agronomists to access solar irradiance data. Here we suggest a simple method using a sun-slope geometry based topographical coefficient to estimate daily solar irradiance on any sloping surfaces from global solar radiation measured at a nearby weather station. An hourly solar irradiance ratio ($W_i$) between sloping and horizontal surface is defined as multiplication of the relative solar intensity($k_i$) and the slope irradiance ratio($r_i$) at an hourly interval. The $k_i$ is the ratio of hourly solar radiation to the 24 hour cumulative radiation on a horizontal surface under clear sky conditions. The $r_i$ is the ratio of clear sky radiation on a given slope to that on a horizontal reference. Daily coefficient for slope correction is simply the sum of $W_i$ on each date. We calculated daily solar irradiance at 8 side slope locations circumventing a cone-shaped parasitic volcano(c.a., 570m diameter for the bottom circle and 90m bottom-to-top height) by multiplying these coefficients to the global solar radiation measured horizontally. Comparison with the measured slope irradiance from April 2007 to March 2008 resulted in the root mean square error(RMSE) of $1.61MJ\;m^{-2}$ for the whole period but the RMSE for April to October(i.e., major cropping season in Korea) was much lower and satisfied the 5% error tolerance for radiation measurement. The RMSE was smallest in October regardless of slope aspect, and the aspect dependent variation of RMSE was greatest in November. Annual variation in RMSE was greatest on north and south facing slopes, followed by southwest, southeast, and northwest slopes in decreasing order. Once the coefficients are prepared, global solar radiation data from nearby stations can be easily converted to the solar irradiance map at landscape scales with the operational reliability in cropping season.

Development and Application of Landslide Analysis Technique Using Geological Structure (지질구조자료를 이용한 산사태 취약성 분석 기법 개발 및 적용 연구)

  • 이사로;최위찬;장범수
    • Spatial Information Research
    • /
    • v.10 no.2
    • /
    • pp.247-261
    • /
    • 2002
  • There are much damage of people and property because of heavy rain every year. Especially, there are problem to major facility such as dam, bridge, road, tunnel, and industrial complex in the ground stability. So the counter plan for landslide or ground failure must be necessary In the study, the technique of regional landslide susceptibility assessment near the Ulsan petrochemical complex and Kumgang railway bridge was developed and applied using GIS. For the assessment, the geological structures such as bedding and fault were surveyed and the geological structure, topographic, soil, forest, and land use spatial database were constructed using CIS. Using the spatial database, the factors that influence landslide occurrence, such as slope, aspect, curvature and type of topography, texture, material, drainage and effective thickness of soil, type, age, diameter and density of forest, and land use were calculated or extracted from the spatial database. For application of geological structure, the geological structure line and fault density were calculated. Landslide susceptibility was analyzed using the landslide-occurrence factors by probability method that is summation of landslide occurrence probability values per each factors range or type. The landslide susceptibility map can be used to assess ground stability to protect major facility.

  • PDF

Review on the Three-Dimensional Magnetotelluric Modeling (MT 법의 3차원 모델링 개관)

  • Kim, Hee-Joon;Nam, Myung-Jin;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.148-154
    • /
    • 2004
  • This article reviews the development of three-dimensional (3-D) magnetotelluric (MT) modeling. The 3-D modeling of electromagnetic fields is essential in understanding the physics of MT soundings, and in implementing an inversion method to reconstruct a 3-D resistivity image. Although various numerical schemes have been developed over the last two decades, practical methods have been quite limited. However, the recent rapid improvement in computer speed and memory, as well as the advance in iterative solution algorithms for a large system of equations, makes it possible to model the MT responses of complex 3-D structures, which have been very difficult to simulate before. The use of staggered grids in finite difference method has become popular, conserving a magnetic flux and an electric current and allowing for realistic discontinuous fields. The convergence of numerical solutions has been greatly accelerated by adopting Krylov subspace methods, proper preconditioning techniques, and static divergence corrections. The vector finite-element method using edge elements is also free from the discontinuity problem, and seems a natural choice for modeling complex structures including irregular topography because its flexibility allows one to capture full geometric complexity.

Applications and Perspectives of Fluvial Biogeomorphology in the Stream Management of South Korea (우리나라 하천 관리에서 생물지형학의 적용과 전망)

  • Kim, Daehyun;Kim, Won;Kim, Eunsuk;Ock, Giyoung;Jang, Chang-Lae;Choi, Mikyoung;Cho, Kang-Hyun
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • In fluvial and riparian ecosystems, biogeomorphological research has considered the complex, multi-way relationships between biological and hydro-geomorphological components over a wide range of spatial and temporal scales. In this review, we discussed the scope and processes of fluvial biogeomorphology by explaining (1) the multi-lateral interactions between organisms and hydrogeomorphic conditions, (2) the relationships between biodiversity and habitat heterogeneity, and (3) the effects of disturbance on ecosystem patterns. Over time, an organism-landform complex along streams transitions in the sequences of geomorphic, pioneer, biogeomorphic, and ecological stages. Over space, water flow and sediment distributions interact with vegetation to modify channel topography. It is the habitat heterogeneity in streams that enhances riparian biodiversity. However, in the areas downstream of a dam, habitat types and conditions are substantially damaged and biodiversity should be reduced. In South Korea, riparian vegetation flourishes in general and, in particular, invasive species actively colonize in accordance with the changes in the fluvial conditions driven by local disturbances and global climate change. Therefore, the importance of understanding reciprocal relationships between living organisms and hydrogeomorphic conditions will ever increase in this era of rapid climate change and anthropogenic pressure. The fluvial biogeomorphic framework reviewed in this article will contribute to the ecological management and restoration of streams in Korea.

A Study on the Selecting Factors of Manufacturing and Logistic Hub in Far Eastern Area (극동지역 제조 및 물류거점 선정요인 중요도 분석에 관한 연구)

  • Kim, Hak-so;Han, Ji-young
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.29-39
    • /
    • 2016
  • As geopolitical, archaeological and strategic interests on cooperation with countries in the Far Eastern Area is gradually increased, countries are competing to attract or install a logistics or manufacturing hub in their countries. In this study, we investigated the relative importance of factors on the main three and nine detailed criteria from the domestic and overseas experts on Far Eastern Area. Using AHP(Analytic Hierarchy Process) analysis, priority importance of factors was derived. As a result, we find that the most important factor was economic factor. In detail, industrial complex creation was the highest factor and the institutional guarantees for the investment on policy and transportation network was second highest factor. Based on analysis result, specific competitiveness level in the 10 region of Far East was follows. Hunchun, Vladivostok, Yanji, Tumen, Rajin, Hassan, Ussuriysk, Cheongjin, Mihaylov Skiing, Nije Jeuchinski were showed in order. Hunchun showed the highest competitive level in location, topography, compliance to the around cities, transportation network, industrial complex, excellence in logistics facilities, long-term investment plans, institutional guarantees for investment, customs efficiency and political stability. However, in other factors such as population and number of households, public facilities, potential demand and resource utilization, Vladivostok showed the highest level.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

Analysis of the Cold Air Flow in Suwon for the Application of Urban Wind Corridor (도시 바람길 활용을 위한 수원시 찬공기 유동 분석)

  • CHA, Jae-Gyu;CHOI, Tae-Young;KANG, Da-In;JUNG, Eung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.24-38
    • /
    • 2019
  • Due to the dramatic spatial changes caused by industrialization, environmental problems such as air pollution and urban heat island phenomenon, etc. are occurring in cities. In this case, the wind corridor, which is a passage through which fresh and cool air generated in forests outside cities move to the downtown, can be used as a spatial planning method for improving urban environmental problems. Cold air is determined by the characteristics of the flow depending on the topography and land use of cities, and based on this, the medium- and long-term plan should be established. Therefore, this study analyzed the flow of cold air at night through the KLAM_21 model in Suwon-si, Gyeonggi-do, to prepare the basic data required to apply the wind corridors. As a result, it turned out that cold air of Suwon-si was mainly generated from Gwanggyo Mountain that is a large mountain area in the north, and flowed into the urbanization promotion area, and about three hours after sunset, cold air flowed into the downtown. By district, the depth, wind speed, and direction of the cold air layer were formed differently according to the characteristics of the topography and land use. In the areas where large forests were adjacent, the flow of cold air was active. There are three main wind corridors where cold air flows to the downtown of Suwon-si, all of which are formed around rivers. Especially, if the connection between rivers and the surrounding green areas is high, the effect of wind corridors is found to be significant. In order to utilize the wind corridors of Suwon-si, based on the results of this study, it is necessary to make climate maps through actual survey and complex analysis of cold air flow and establish mid-to-long-term plans for the conservation and expansion of major wind corridors.

A Study on Integrated Visualization and Mapping Techniques using the Geophysical Results of the Coastal Area of the Dokdo in the East Sea (독도 연안 해저 지구물리 자료의 통합 중첩 주제도 작성 연구)

  • Lee, Myoung Hoon;Kim, Chang Hwan;Park, Chan Hong;Rho, Hyun Soo;Kim, Dae Choul
    • Economic and Environmental Geology
    • /
    • v.49 no.5
    • /
    • pp.381-388
    • /
    • 2016
  • The purpose of this study is to integrate and visualize using mapping techniques based on precise seabed geomorphology, seafloor backscattering images and high-resolution underwater images of the nearshore area around the Dokdo, in the East Sea. We have been obtained the precise topography map using multibeam echosounder system around the nearshore area(~50 m) of the southern part of the Seodo. Side scan sonar survey for analysis seafloor backscattering images was carried out in the same area of topography data. High-resolution underwater images(zone(a), zone(b), zone(c)) were taken in significant habitat scope of the nearshore area of the southern part of the Seodo. Using the results of bathymetry, seafloor backscattering images, high-resolution underwater images, we performed an integrated visualization about the nearshore area of the Dokdo. The integrated visualizing techniques are possible to make the seabed characteristic mapping results of the nearshore area of the Dokdo. The integrated visualization results present more complex and reliable information than separate geological products for seabed environmental mapping study and it is useful to understand the relation between seafloor characteristics and topographic environments of the study area. The integrated visualizing techniques and mapping analysis need to study sustainably and periodically, for effective monitoring of the nearshore ecosystem of the Dokdo.

A Study on the Structure Style of Street Green Spaces on Port Island, Kobe, Japan (일본 고베시(神戶市) 포트아일랜드 가로녹지 구조 유형 연구)

  • Kwak, Jeong-In;Han, Bong-Ho;Noh, Tai-Hwan;Kwak, Nam-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.62-74
    • /
    • 2015
  • This study was carried out to provide examples of planting methods for the construction of street green spaces with abundant greenery by analyzing road type, surrounding land use and planting structures in street green spaces on Port Island, Kobe, Japan. Port Island_(total area: 826ha) is a marine cultural city located in Japan's first artificial island with facilities of urban function and port facilities. The study site was designated at 11 plots of $55{\sim}285m^2$ on Port Island, and topography structure styles were divided into four types with mounding style, slope style, slope and flat style, flat style according to the adjacent roads width. The area adjacent to the middle roads with high levels of noise and pollution set up the mounding style, slope style, slope and flat style of multi-layer structures using topographic properties. The area adjacent to small roads focused on a green strip with shrubs on a flat style. Surrounding land-uses include a public institution, housing complex, and a commercial building. The planting concept was a buffer and landspace function in case of the middle road_(lane 4) while the small road_(lane 2) was a landspace function. Planting species were diverse with Liquidambe formosana, Cinnamomum camphora, Sapium sebiferum, Cedrela sinensis, Laeocarpus sylvestris var. ellipticus, Ginkgo biloba, Prunus serrulata var. spontanea, Zelkova serrata, Quercus glauca, Juniperus chinensis, Magnolia kobus, Rhododendron spp., Camellia japonica, Abelia mosanensis, etc. Planting density was 0.02~0.08(0.04) individual/$m^2$ at the canopy layer, 0.02~0.08(0.04) individual/$m^2$ at the understory layer. Ratio of green coverage was 40.0~173.7(93.0)% at the canopy layer, 2.1~79.8(34.9)% at the understory layer and 17.9~64.2(32.9)% at the shrub layer. $Gr{\ddot{u}}volumenzahl$ was $1.43{\sim}6.67(4.13)m^3/m^2$ at the canopy layer, $0.02{\sim}2.01(0.85)m^3/m^2$ at the understory layer and $0.14{\sim}0.58(0.26)m^3/m^2$ at the shrub layer. The ratio of green coverage of street green space on Port Island was higher than that of Seoul, and particularly, the ratio of green coverage and $gr{\ddot{u}}volumenzahl$ at the shrub layer differed, compared to the main street green space in Korea. The result of this study may be applicable to other coastal reclaimed cities in terms of setting methods for street greenery considering the topography structure, planting structure and planting function.

Path Analysis of Factors Limiting Crop Yield in Rice Paddy and Upland Corn Fields (벼와 옥수수 재배 포장에서 경로분석을 이용한 작물 수확량 제한요인 분석)

  • Chung S. O.;Sudduth K. A.;Chang Y. C.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.45-55
    • /
    • 2005
  • Knowledge of the relationship between crop yield and yield-limiting factors is essential for precision farming. However, developing this knowledge is not easy because these yield-limiting factors are interrelated and affect crop yield in different ways. In this study, data for grain yield and yield-limiting factors, including crop chlorophyll content, soil chemical properties, and topography were collected for a small (0.3 ha) rice paddy field in Korea and a large (36 ha) upland corn field in the USA, and relationships were investigated with path analysis. Using this approach, the effects of limiting factors on crop yield could be separated into direct effects and indirect effects acting through other factors. Path analysis provided more insight into these complex relationships than did simple correlation or multiple linear regression analysis. Results of correlation analysis for the rice paddy field showed that EC, Ca, and $SiO_2$ had significant (P<0.1) correlations with rice yield, while pH, Ca, Mg, Na, $SiO_2,\;and\;P_2O_5$ had significant correlations with the SPAD chlorophyll reading. Path analysis provided additional information about the importance and contribution paths of soil variables to rice yield and growth. Ca had the highest direct effect (0.52) and indirect effect via Mg (-0.37) on rice yield. The indirect effect of Mg through Ca (0.51) was higher than the direct effect (-0.38). Path analysis also enabled more appropriate selection of important factors limiting crop yield by considering cause-and-effect relationships among predictor and response variables. For example, although pH showed a positive correlation (r=0.35) with SPAD readings, the correlation was mainly due to the indirect positive effects acting through Mg and $SiO_2$, while pH not only showed negative direct effects, but also negatively impacted indirect effects of other variables on SPAD readings. For the large upland Missouri corn field, two topographic factors, elevation and slope, had significant (P<0.1) direct effects on yield and highly significant (P<0.01) correlations with other limiting factors. Based on the correlation analysis alone, P and K were determined to be nutrients that would increase corn yield for this field. With the help of path analysis, however, increases in Mg could also be expected to increase corn yield in this case. In general, path analysis results were consistent with published optimum ranges of nutrients for rice and com production. We conclude that path analysis can be a useful tool to investigate interrelationships between crop yield and yield limiting factors on a site-specific basis.